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CHAPTER 1. INTRODUCTION

As the title indicates, this dissertation contains multiple topics and can be classified into
two parts in a large way or five topics in a detailed way. The first part is concerned with a
digital tuning scheme for digitally programmable integrated continuous-time filters {4],[8]-[10].

The second part includes four topics:

¢ Nonideality consideration for high precision amplifiers — Analysis of random common-

mode rejection ratio [5],[7].

¢ An automatic offset compensation scheme with ping-pong control for CMOS operational
amplifiers [2],[6].

o Very low voltage circuits and operational amplifiers using floating gate MOS transistors
[3].

e An accurate and matching-free Vr extractor using a ratio-independent SC subtracting

amplifier and a dynamic current mirror [1].

which can be grouped under the name of techniques for high-precision monolithic linear circuit
design and implementation.

Since the five topics are not directly related to each other, each topic is presented in a
separate chapter, and each chapter has a full organization including introduction, main body,
and conclusion. Actually, these topics are based on the journal or conference papers which
have been already published or are to be published. Although the topics are not directly
connected with each other, they can be correlated in that they are all concerned with theories
and techniques for high-precision linear circuit design and implementation.

To obtain high-precision linear integrated circuits, the causes degrading their accuracy
must be well understood, and appropriate measures should be taken to compensate for them.
These are what the five topics are concerned with. In the first topic, continuous-time filters
are digitally tuned for high-precision continuous-time filtering. This is one of the attempts to

digitally solve the problems such as process variations and parasitic effects which are inherent



to monolithic linear circuits and degrade their performance by deviating the fabricated circuits
from desired circuits. To obtain high-precision linear integrated circuits, it is required that
op-amps which are the most fundamental circuits be implemented with high accuracy. Thus,
in the second topic, the nonidealities associated with op-amps are analyzed. The analyses
include random CMRR and offset and their statistical characteristics which will be of much
help to obtaining high-precision integrated op-amps. In the third topic, op-amp offset voltages
are automatically compensated by digital means. The offset is one of the important obstacles
pulling op-amps out of high-precision, and thus must be compensated for high-precision appli-
cations. With increased low-voltage circuit applications, low-voltage as well as high-precision
linear integrated circuits become essential. In the fourth topic a promising scheme to obtain
high-precision linear circuits that can be operated with a very low power supply is proposed. Fi-
nally, a high-precision threshold voltage extraction scheme applicable to many real-time on-chip
applications is discussed. The threshold voltage extractor is also required for the low-voltage
circuit implementation.

Chapter 2 is concerned with a digital tuning scheme. For high-precision monolithic fil-
tering, a continuous-time filter must be tuned after fabrication because of large component
variations and undesired parasitic effects. This problem has motivated the introduction of
many tuning techniques. In this chapter, as a new promising high-precision tuning technique,
a digital tuning scheme is presented for digitally programmable/tunable continuous-time fil-
ters which have many broadband applications where accuracy as well as reconfigurability to
various filter functions in a wide range of frequency are crucial for the system. The tuning
scheme consists of two steps, system identification (ID) and adjustment. Various methods for
continuous-time filter identification are investigated on the basis of accuracy and efficiency from
both time requirements and silicon implementation viewpoints. An adjustment tuning algo-
rithm is presented which uses the system ID results to estimate process dependent parameters
and then to calculate filter control parameters for adjustment. Extensive Monte-Carlo based
simulation results and some experimental results are also presented to evaluate the performance
of the digital tuning scheme. Finally, the first statistical characterization scheme for rigorously
assessing the performance of any tuning algorithm is introduced.

In Chapter 3, nonideal factors which play a key role in performance and yield in high-
precision applications of operational amplifiers are rigorously investigated. Of necessity, the
combined effects of both deterministic and statistical parameters must be incorporated. The
statistical characteristics of the common-mode rejection ratio and the offset of two-stage CMOS

op-amps are investigated. The op-amp errors associated with finite open-loop gains, finite




CMRRs, and nonzero offset voltages are compositely analyzed.

In many op-amp applications, offset cancellation or reduction is critical because an ampli-
fier input offset voltage limits the capability of the system. An automatic offset compensation
scheme for CMOS operational amplifiers is presented in Chapter 4. Offset is reduced by dig-
itally adjusting the bias voltage of a programmable current mirror which is used as the load
of the differential input stage. A 100% operating duty cycle is obtained by using a ping-pong
structure. The offset compensation scheme is inherently time and temperature stable since the
offset compensation is periodically performed with the ping-pong control. The proposed circuit
has been fabricated using a 1.0-um n-well CMOS process. The measured offset voltages of the
test circuits are less than 4001V in magnitude.

With emergence of an increasing number of battery-operated applications, low voltage
circuit techniques have moved into the limelight. Following the trend, a threshold voltage
tunable op-amp structure that can be operated with a very low power supply (e.g. 0.5V) is
presented in Chapter 5. Since the threshold voltage of a floating gate transistor can be precisely
controlled, use of floating gate MOS transistors as the basic circuit element makes it possible
to obtain much lower voltage circuits than achievable by other approaches using device size
scaling techniques where the threshold voltage variation is significantly increased as the device
size is decreased. Good matching can also be achieved by tuning the threshold voltages. A
two-step threshold voltage tuning scheme is presented. Due to the long term charge retention
property of the floating gate transistors, the threshold voltage tuning does not have to be done
frequently, and thus, near continuous-time operation of the op-amp can be achieved.

In Chapter 6, an accurate threshold voltage extraction scheme for MOS transistors is
presented. In contrast to alternative methods recently reported in the literature, the proposed
scheme does not need a matched replica of the transistor under test. Moreover, the scheme can
be accurately implemented in a matching-free way. Thus, the scheme has potential of extracting
threshold voltages much accurately than other techniques of which the performances depend
upon the test device matching as well as other component matching in their extraction circuits.
The proposed scheme is implemented using a ratio-independent switched-capacitor subtracting
amplifier and a dynamic current mirror. Nonideal effects associated with these circuits are

thoroughly investigated.



CHAPTER 2. A DIGITAL TUNING SCHEME FOR DIGITALLY
PROGRAMMABLE INTEGRATED CONTINUOUS-TIME FILTERS

2.1 Introduction

While digital filters have many advantages due to their inherent characteristics such as
signal processing in digital form and easiness in design, analysis, and testing automation,
continuous-time (analog) filters may offer advantages over digital filters in many respects. Inte-
grated continuous-time filters require orders of magnitude less die area than comparable digital
filters and do not need any domain transformation (continuous-time to discrete-time or vice
versa) which is essential for digital filtering when the signal to be processed is in continuous-time
form. Many problems which are involved in the peripheral parts required for the transforma-
tion such as A/D and D/A converters, anti-aliasing filters and reconstruction circuits are main
drawbacks in digital filtering [19]. The most attractive feature of the pure continuous-time
filtering is the capability of operating at higher frequencies than its sampled-data counterparts
such as switched-capacitor, switched-current, and digital filters [11]-[15]. These reasons make
the continuous-time filtering preferable in certain applications.

In spite of the advantages of continuous-time filters, their use has been limited because of
the significant discrepancy between the designed and fabricated filter characteristics due to large
component tolerances and parasitics. Therefore, tuning is essential, and it is the most serious
and challenging problem which must be overcome to obtain high-performance continuous-time
filtering. In the past many kinds of techniques have been developed for tuning of various
continuous-time filters [13]-[37]. These can be categorized as functional methods, deterministic
methods with automatic tuning algorithms, and automatic on-chip methods with analog tuning

loops associated with master-slave techniques.

Functional Tuning: In functional tuning components are adjusted on a one-by-one basis

while an excitation is applied to the circuit and measurements are made. Although functional




tuning may be efficient in some cases, it is generally precluded because it is inherently slow and
depends on unclear heuristics. As early versions of tuning techniques, the functional methods
and the deterministic methods have been applied to mainly hybrid integrated active RC filters

for low-frequency filtering applications.

Deterministic Tuning: In deterministic tuning [26)-[33] the necessary adjustments are
analytically calculated from a set of component measurements. Many deterministic tuning
algorithms have been proposed, and some of them have been successfully implemented and
used for analog filter products. Three representative deterministic tuning algorithms which
have been compared in [26], [27], are a least squares method [31], a sequential tuning algorithm
[28],[29], and a large-change-sensitivity method [30]. In these methods only a subset of the
components, usually resistors, are adjusted in an irreversible and increasing manner based
upon the measurements of the remaining components, usually capacitors and resistors. The
methods require solving complex nonlinear equations derived from circuit analysis at a set of
discrete frequency points. Therefore, a resistor and frequency selection procedure is essential
in these methods and should be handled carefully because the performance of these algorithms
is directly related to these choices.

The adjustment method of deterministic tuning is trimming the circuit resistors by phys-
ical or chemical methods, so the trimming errors are unavoidable. Sometimes the required
resistor trim tolerances are so tight that satisfactory results can not be obtained by the state of
the art of the available trimming technology. The trimming error, of course, can be minimized
if the closed-loop method of the sequential tuning algorithm is used [28]. Drawbacks of these
methods are that much task is required for deriving the required expressions and a sophisticated
on-line computer with a large software support system is also required for its implementation.
In addition these algorithms have been applied only at low frequencies, and the tunability has
not been considered at higher frequencies where parasitics have much more dominant effects on
the filter performance than component tolerances. These algorithms have only limited success
at compensating for component variations, and thus, have been restrained to tuning circuits

already close to the desired circuits.

Analog Loop Tuning: The most popular approaches to tuning of high-frequency continuous-
time filters have been to use on-chip analog tuning loops such as phase locked loops (PLL) and
vector locked loops (VLL) based upon the master-slave concept [13]-[23]. These methods have

been applied to high-frequency OTA-C continuous-time filter implementations, and good results




have been achieved. Most early versions of these techniques used one single reference frequency
only for pole resonance frequency control, and @-control was not considered necessary under
the assumption that the quality factor has sufficient accuracy by component ratios. For highly
selective filters, this assumption is not correct any more because parasitic effects produce sig-
nificant errors in the effective quality factor and thus the gain at the resonance frequency. To
overcome this problem more complex tuning schemes have been reported [13]-[17] which con-
trol two objectives, quality factor control as well as frequency control. It has been shown that
controlling more objectives results in better performance at the expense of more complexity
of tuning circuits. The primary limitation of these kinds of methods using the master-slave
scheme is the mismatch errors between reference circuits and main filters and other undesired

effects associated with the large extra analog tuning circuits.

Digital Tuning: Although attention has been concentrated on high-frequency filtering
as a promising application area of the continuous-time filters, many broadband continuous-
time filtering applications such as telephony and radio also exist where accuracy as well as
reconfigurability to different types of filter functions in a wide range of frequency are required
for the system [39]. For these kinds of applications, digitally programmable and digitally tunable
continuous-time filter architectures have been developed [38]-[43]. This kind of reconfigurable
filter should be served by more general tuning schemes that can perform tuning of various filter
transfer functions. A feasible way to do that is opening a tuning host or employing a tuning
microprocessor to perform a well developed software tuning algorithm. This tuning scheme is
referred to as digital tuning.

In the digital tuning, the actual filter performance is measured, and the measured data in
digital form are transferred to a computer/microprocessor that performs a tuning algorithm to
digitally control the continuous-time filter. This technique does not require component match-
ing as in the master-slave scheme. Although the digital tuning also has some disadvantages that
it requires an external tuning host computer/microprocessor and precision filter performance
measurement circuitry and that the performance is limited by the quantization effects of the
digital control mechanism and the accuracy of the performance measurement circuit, it has
potential of high accuracy as well as applicability to high-@ and high-frequency applications if

a good tuning algorithm is provided.

The comparison of the tuning schemes mentioned above is summarized in Table 2.1. A

few digital tuning schemes have been reported in [40],[41]. Their work has demonstrated the



Table 2.1: Comparative summary of the tuning schemes
Functional Tuning Deterministic Tuning | Analog Loop Tuning Digital Tuning
. - - : Master-Slave System ID
Main Idea Heuristics Circuit Analysis Scheme Adjustment
Adjustment | | aser Trimming Laser Trimming Analog Control Digital Control
M eg:&‘;mt Frequency Responses | A Set of Components No Frequency Responses
Excitation Yes No Yes Yes
Frequenc : ;
ﬁ%nge y Low Low High High
- Efficient when - Formidable task to [ - On-chip automatic | - Simplified by
filters are simple derive the required _tuning decomposing it into
expressions - Require large extra two phases
Ch - Inherently slow - Required resistor analog tuning - Require software
%":fc:s trim tolerance are circuits support system
tight - Mismatch errors - Require digital
- Large software between master and contol circuits and
support system slave filters measurement
- Require accurate - Signal interference circuits
system model - Limited accuracy - Potential of high
- Applicable at only accuracy
low frequency range
- Suffer from aging

applicability of the digital tuning methods to high-precision and high-frequency filter applica-
tions. However, their tuning schemes were developed for only 2nd-order bandpass filters, and
extensions to versatile filter types or to higher-order filter functions have not been considered.
The objective of this research is thus to develop a more general digital tuning scheme for digi-
tally controllable continuous-times filters such that it can be well applicable to any type or any
order filter functions. The whole tuning procedure is simplified by dividing it into two phases:
system identification (ID) and adjustment. The transfer function of the filter to be tuned is
first identified from input-output time-domain samples. Based upon the identified results, new
filter control parameters are estimated to adjust the filter. This procedure is repeated until a
tuned filter is obtained.

Section 2.2 describes a general and simplified formulation of the digital tuning problem.
In Section 2.3 the digitally programmable continuous-time filter structure [38, 39] is briefly

reviewed which is the basic test structure for the proposed tuning algorithm. Nonidealities of




the filter structure which have strong effects on the tuning performance are also investigated.

In Section 2.4, various continuous-time system ID methods are described. Two approaches
are investigated. One is via the 2-domain system ID followed by z-to-s transformation. The
other is based on the s-domain system ID following frequency response measurements. An
iterative complex least squares (ICLS) algorithm [9] which can be referred to as the s-domain
counterpart of the 2-domain generalized least squares (GLS) algorithm is proposed as a ro-
bust s-domain system ID method. Very accurate domain transformation (s-to-z and 2-to-s)
methods based on complex LS algorithms are also proposed and compared with the well-known
bilinear transformation method. Frequency response measurement algorithms required for the
second approach are comparatively reviewed on the basis of accuracy and implementation cost
[4]. Extensive simulations based on the Monte Carlo method are performed to investigate the
performance of the continuous-time system ID methods.

In Section 2.5, a tuning (adjustment) algorithm [8] related to the physical filter structure is
introduced. The proposed tuning algorithm combined with the system ID method is extensively
simulated to evaluate the whole digital tuning scheme. Yield calculation of the tuned filters
is also performed to more clearly investigate the performance of the tuning scheme. Some
experimental tuning results are presented in this section. Finally, conclusive remarks including

the contribution of this research, limitations, and possible future works are given in Section 2.6.

2.2 Tuning Problem Formulation

The digital tuning procedure is partitioned into two phases: system identification, and
adjustment as shown in Fig 2.1. The input-output samples of the actual continuous-time filter
which has an unknown transfer function T,(s) are collected by a performance measurement
circuit. The input-output data are then fed to a system ID algorithm to estimate the parameters
of a model Tj(s). The estimated model parameters C; which is the coefficient vector of the
identification model Tj(s) is compared with the desired model parameters Cy which is the
coefficient vector of the desired model Ty(s). Based on the comparison, new filter control
parameters are calculated by an adjustment algorithm and then the physical filter components
are adjusted by AG where G is the filter component vector.

The initially implemented continuous-time filter response T;(s)

Ma Lol
To(s) = ;‘:0—”“'3

i=0 Qg;$'

usually differs from the desired response Ty(s) due to the component variations and parasitic
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Figure 2.1: Block diagram of the digital tuning scheme

effects. The actual filter response T,(s) consists of two components and can be expressed, for
convenience, as

Ta(s) = Te(s)T(s)-
where T¢(s) is modeled, controllable/programmable and capable of realizing the desired re-

sponse. _
i=p beis’

Z?-_So acisi '

The order of Tc(s) is the same as that of Ty(s). The T,(s) is due to parasitics. The order of

Ty(s) is unknown, so the order of the actual filter response T,(s) is also unknown but will be

T(s) =

greater than that of the desired response Ty(s). In reality, Ts(s) can not be expressed as a simple
multiplication of two independent terms T¢(s) and T,(s) since they are usually correlated. If

the coefficient vector C. and the component vector G are defined by

C. = [ac0.- Qcnerbeo-. .bcmc]T

G = [Rl ...Rk,cl. ..C]]T,
then the coefficient C, is a function of G,
C.= f(G) (2.1)

It is now obvious that the tuning problem is to control the controllable components of the
component vector G such that 7,(s) approaches to Ty(s). The whole tuning procedure is then

as follows:
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1. Measure the time-domain input and output samples of the continuous-time filter to be

tuned.
2. Identify the actual filter with a system ID model T;(s) using the measured data.

3. Compare between the desired response Ty(s) and the identified result T;(s) and determine
the required AC, such that T,(s)(= Ti(s)) approaches to Ty(s).

4. Map AC, to the required AG and make component adjustment.
5. Repeat the above steps until tuning is completed.

It can be seen that the tuning performance will highly depend on the accuracy of the system
ID. The system ID model T;(s) should have the same order as the desired response Ty(s) to
easily obtain the AC, and AG and thus to make the adjustment algorithm simple. Thus, the
system ID must be robust in the presence of parasitics because the order of the system ID
model is usually less than that of the actual filter to be identified.

2.3 Digitally Programmable Continuous-Time Filter Architecture

The digitally programmable continuous-time filter architecture [39] is shown in Fig. 2.2.
This structure has been selected specifically as a basic test vehicle for investigating the per-
formance of the digital tuning algorithm. The system consists of an analog bus, a digital bus,
a local digital controller, a performance monitor and a number of digitally programmable bi-
quadratic sections. The structure of each biquadratic block is shown in Fig. 2.3, which consists
of 5 programmable operational transconductance amplifiers (OTA), two programmable capac-
itor arrays, an analog buffer stage, and six analog configuration switches. More details of the
architecture and characteristics of each elements can be found in [38]-[43].

The ideal transfer function of the programmable biquadratic block is given by

- B
Vout _ (Bhp)s2 + (gmd 9;113 b; )8+ (9m19m3gfrcn:9m331p)
Vi 7+ e+

(2.2)

where the B variables can be 0 or 1 depending upon the switch settings. The pole frequency

w, and the quality factor @ of the biquad are given by
_ Im29m3
Yo = \7CeCr
_ /gngma gms
Q = CeCr / ( Cr )
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The model for Ti(s) and T;(s) should be

82+b18+bo
2+ a18+ ag

which has only 4 degrees of freedom, instead of 5 in ordinary second order rational transfer

T(s) = Ti(s) = (2.3)

functions. The coefficient vector and the component vector are then

C. [ao, @1, bo, b1]T

G

[gml <+ «gms, Cé, C7]T

The coefficients are given respectively by

gms
— 9ms 2.
a1 C (2.4)
gm29m3
= 2.
ag 0607 ( 5)
by = Ima — gm3Bbp. (2.6)
Cr
Im19m3 + gmagm3 Bip
by = .
0 CaCr (2.7)

These equations show that C. is a function of G as in (2.1). From (2.4)-(2.7), it follows that
we can get independent or sequential adjustment of the transfer function coefficients.
Compared to conventional analog filters, the digitally programmable continuous-time filter
structure has many advantages which are favorable to the filter adjustment. The digitally
controllable structure provides more accuracy, flexibility, and simplicity for filter adjustments

as follows.

1. Since the operational transconductance amplifier (OTA) gains are programmed or ad-
justed by digitally controlled voltages, more accurate adjustments can be possible than
in the conventional analog filters where resistors are usually adjusted by laser trimming,.

The speed of digital adjustments is much faster than that by trimming.

2. Digital tuning can be more flexible than the conventional deterministic tuning because
in the digitally programmable continuous-time filter the OTAs can be adjusted to have
any gains in a given range at any time, but in the conventional filters resistors can be

adjusted only in an irreversible and increasing manner.

3. Since the digitally programmable continuous-time filter consists of cascaded biquadratic
blocks, the individual second-order sections of the filter can be separately tuned to adjust

the whole filter, and the independent or sequential adjustability of the filter parameters
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can make the computing procedures for the tuning corrections very simple not including
any linearization procedures or matrix inversions as in the conventional deterministic

tuning [26]-[33].

4. The digital tuning does not suffer from the mismatch errors which are the major draw-
backs in the conventional analog loop tuning [13]-[23], because the digitally programmable
continuous-time filter does not have any reference circuits which should be well matched

with main filters.

On the other hand, this structure also has some nonidealities which affects the tuning perfor-
mance. The nonidealities associated with OTA-C integrators and their effects are discussed in

the following subsection.

2.3.1 Effects of Nonideal OTA-C Integrators

A basic component consisting of the biquadratic blocks is the OTA-C integrator shown in
Fig. 2.4(a). The ideal transfer function in (2.2) holds under the assumption that the integrators
are ideal, and it has been derived using the ideal model shown in Fig. 2.4(b). The ideal integrator
transfer function is
Vour _  Gmol Cr
Vin s

Wy

8

Tint(3) =

where g, is the dc transconductance gain of the OTA and w, is the unity-gain frequency given
by
wy = 2me, (2.8)
CL

The frequency responses of the ideal integrator is shown in Fig. 2.5(a). In reality each OTA has
nonidealities such as parasitic poles and zeros associated with internal nodes and finite output
impedance resulting in a finite dc gain of the OTA or the OTA-C integrator.

The parasitic poles and zeros of an OTA can be modeled by a single pole (w,) as follows.
If an OTA with infinite output impedance has n parasitic poles and m parasitic zeros, then the
transfer function of the OTA-C integrator can be written as
wy (14 8/wz) (14 8/wm)
— (2.9)
8 (14 8/wp)-++(1+ 8/wpn)

Since the parasitic poles and zeros are usually located at higher frequencies than the unity-gain

Tint(s) =

frequency wy,, by assuming the frequency range of interest w << wp;,w,i, equation (2.9) can be




14

Vin Zm Vout

(b)
[ ——
Vin EmoVin Ro =T Co
— T
©
I
— 1
Vin EmoVi - I
moV In I Cp Rp
(d)

Ro

Co

® Vout

CL
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approximated by

Wy 1
Tint(®) = T s ) (L F sfan (1 = 5fom) (1 = 5]
Wy 1

S 1+s(Thid - TR k)
Defining the effective parasitic pole w, as
1 &1 )
wy, =1/ (E —_—— E -
’ Swi Gwa)’

the integrator transfer function and the OTA transconductance gain can be approximated by

w 1
Tonle) = = (W)

~ 9mo
gm(s) = 1o T o/’ (2.10)

where w, is as defined in (2.8).
The effects of the effective parasitic pole on the integrator is the high frequency roll off
of the gain response and the excess phase lag at the unity-gain frequency as can be seen from
Fig. 2.5(b). This excess phase error causes the @-enhancement effect as can be seen later. If we
assume that all OTAs of the biquad have the same effective parasitic pole, then a more realistic
transfer function for the biquad of Fig. 2.3 can be obtained by substituting (2.10) into the ideal
model (2.2):
T2 + 278 - (1 4 7imizimd )2 | Imiimd g | Spdimd
7254 +278% + (1 + 7982 )s% + dpbs + Ip2imd

To(s) ~ , (2.11)

where 7 = 1/wp, By = 0, and By, = By, = 1. A 4th or higher order transfer function is
thus more appropriate for describing the biquad instead of the ideal 2nd-order function. This
phenomenon is called the over-ordering effect.

The over-ordering effect due to the parasitic poles and zeros can be explained in another
way. By assuming w,7 << 1, for medium to high ¢ biquads, the actual pole frequency and

quality factor can be characterized by [68]

Wo, = W,

~ Q
Qa = T=20,rQ (2.12)

Now, it can be easily seen that the effect of the parasitic poles and zeros on the biquad is the
significant {)-enhancement. We define w,7 as the over-ordering factor. Generally, the over-

ordering factor will be very small for low frequency applications because w, is much less than
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wp(= 1/7) at low frequencies. In this case the over-ordering effects can be negligible, but at high
frequencies the over-ordering effects will be substantial. If the effective parasitic pole is located
at 10 times higher frequency than the pole frequency, i.e. the over-ordering factor w,r = 0.1,
and the filter is designed with Q equal to or greater than 5, then it can be seen from (2.12)
that the result is an oscillatory circuit. Therefore, predistortion techniques should be adapted
to implement high-Q biquads. If we can estimate or guess the effective parasitic pole frequency,
then we can use the following predistorted ¢} value at the initial implementation to prevent the

filter from oscillation:

Q

Quist < (1_+2m,
where 7, is an estimated value. Since it is hard to estimate T accurately, the rule of thumb is
to use an over-predistorted @ value.

The model including the finite output impedance but assuming no parasitics in g,,(8) is
shown in Fig. 2.4(c) where R, and C, are the output impedance and output capacitance of
the OTA and Cp, is the integrating capacitance. Assuming Cf, >> C,, the integrator transfer
function is

ngRo

Wy
= —_— 2.13
wyfAo + s ( )
where A, = gmoR, is the finite dc gain of the OTA and w, = gmo/CL is the unity-gain frequency.

The effects of the OTA finite dc gain on the integrator is the finite integrator dc gain (ideally

Tint(s)

infinity) and the phase lead at low frequencies as shown in Fig. 2.5(b).
Using the nonideal integrator equation (2.13), the actual pole frequency and quality factor
of the biquad are given by

Wo, = Wy
Q
Qa 142Q/A,

It can be seen that the phase lead due to the finite dc gain causes §)-degradation and thus

partially compensates for the Q-enhancement effect due to the parasitic poles and zeros.
Combining the parasitics and finite dc gain effects, the real integrator can be modeled

as Fig. 2.4(d) where the effective parasitic pole w, is represented by the internal parasitic

capacitance Cp and resistance R,. The transfer function of the integrator becomes

1 1
gmokto (1 +sRoCL) (1 +stc,,) (2.14)

T Wu/A, + )1+ sfwp) (2.15)

R

Tine(s)
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Using this, the actual quality factor can be readily approximated by

Q
@ = 11 2(1/A, — wer)Q
and the actual pole frequency by w,, ~ w.
The @-degradation effect due to the finite dc gain is usually negligible unless 4, is too small.
Thus, the 4th-order rational function of (2.11) can be used to model the actual over-ordered

biquad. However, if we use the 4th-order model for system ID, we will lose the independent or

Q

sequential adjustments of the transfer function coefficients because in our target architecture,
there is no attempt to tune or cancel the parasitics themselves. A straightforward method is to
then identify the over-ordered actual system with a low order model. The system ID methods
presented in the next section make it possible to use a low order model for identifying the over-
ordered system with good accuracy. We can thus maintain near independence of adjustment of

the transfer function coefficients even in the presence of significant parasitics.

2.4 System Identification

The problem of system ID can be referred to as the estimation of the system model
parameters by observing the system input and output samples as shown in Fig. 2.6. Linear
time-invariant continuous-time system can be modeled as

2izo bisi
1+ 30, a;st ’
where n > m. The problem is thus to estimate the coefficients a; and b; using the sampled

input and output data {z(k)} and {y(k)}.
This problem must be solved efficiently and accurately since as indicated in Section 2.2,

T(s) =

accurate identification of the continuous-time filter to be tuned should be preceded for filter
adjustments. The system model T'(s) is the mathematical equation representing the relationship
between the input and output at all times. A feasible way to obtain such a model is to apply
appropriate inputs to the filter and observe its outputs. The observed (sampled) input and
output data are then processed to estimate the model. It is desirable that the order of the
system model be the same as that of the actual physical filter. However, as mentioned in
Section 2.3, the order of the actual filter can not be detected easily and is usually greater than
that of the desired response because of the over-ordering effects due to parasitics. In that case,
a lower-order model should be used to estimate the over-ordered system because the model

for system ID should have the same order as the desired response for easy adjustment. The
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Figure 2.6: Block diagram representing the system ID problem
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problem of identifying over-ordered systems with lower-order models is deferred for the present
and will be discussed in Section 2.4.5. Until then, it is assumed that the order of the system to
be identified is known, and a model which has the same order as the actual system is used for
system ID.

There are several ways to get an estimation of T'(s) from the input-output samples as
shown in Fig. 2.7. The 2-domain model T'(z) is a discrete-time equivalent to the s-domain
model T'(s) and is described as
M bz
=1y ‘—;é1z;zez""

The z-domain system ID (path < 1 >) is defined as a problem to estimate the discrete-time
model T'(z) from the input-output samples {z(¥)} and {y(k)}. On the other hand, the s-
domain system ID (path < 4 >) is defined here as a problem to estimate the continuous-time
model T'(s) from frequency response data {T'(jwx)}. The 2-domain system ID problem has
attracted major attention since the estimation of the parameters of a discrete-time model is
more straightforward although most systems are of the continuous-time type. From Fig. 2.7 we

can find four different methods to get T(s) from {z(k)} and {y(k)}, i.e.,
Method 1: <2>
Method 2: <1>-<6>
Method 3: <3>-<4>
Method 4: <3>-<5>-<6>

Method 1 can be called the “direct method” and the others the “indirect method.” Most
direct methods [62, 63, 64] are based upon the differential equations which are the basic models
for continuous-time systems. Because of the difficulty to accurately estimate the derivatives
from sampled input-output data, the differential equations are transformed into integral equa-
tion forms. To calculate multiple integrations from sampled data, prefiltering is performed
such as the numerical integration, the bilinear transformation, and orthogonal functions. After
prefiltering a discrete-time ID model which contains the continuous-time model parameters can
be obtained. Now, various parametric system ID algorithms can be applied to the discrete-time
model to estimate the continuous-time model parameters.

In the indirect methods the original problem can be decomposed into a few simpler prob-
lems. Method 2 utilizes the input-output samples to first estimate a discrete-time model us-

ing z-domain system ID algorithms and then determine an equivalent continuous-time model
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Figure 2.7: Relations among sample data and system models

through 2-to-s transformation [58). In method 3, frequency responses (magnitude and phase) of
the continuous-time system are estimated at a set of frequencies from the input-output samples
and then the s-domain model is estimated based upon the frequency response data using s-
domain system ID algorithms [40, 9). Another indirect method (method 4) is possible through
path <3 > — < 5> — < 6 >. In path < 5 >, the discrete-time model is estimated from
frequency response data [57, 56).

The indirect methods are considered the candidates for the continuous-time filter identi-
fication to avoid the complicated prefiltering problem required in the direct method. In this
section method 2 and 3 will be investigated and method 3 is precluded since it looks somewhat
inefficient. Among many well known parameter estimation techniques such as least squares,
maximum likelihood, correlation, instrumental variable, and so on, we will primarily utilize
the method of least squares because it is conceptually simple and applicable to most practical

situations. In fact, the LS method can be applicable to all the paths shown in Fig. 2.7.

2.4.1 z-domain System Identification

In the z-domain system ID, a set of time-domain input and output samples are used to

estimate the coefficients of the transfer function T'(z) which models the system to be identified.
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n(k)
X(k) B(z?) y(k)
| 1+AEY y(k)

Figure 2.8: Basic system configuration for 2-domain system ID

The most popular and basic system configuration for z-domain system ID is shown in Fig. 2.8

[45, 46, 55]) where the followings are assumed:

1. All the noise effects corrupting the input and output signals of the system can be lumped

into a single additive noise source n(k) at the output.

2. The input z°(k) can be observed without any noise since it is a specifically designed test

signal or a control signal.

3. The noise n(k) is a stationary random process with zero mean and is uncorrelated with
both the true system input and output, z°(k) and y°(k).

The 2-domain model T(z) of the system to be identified can be expressed as

() = Yo(z)  B(z7')  bo4 bz 4 boz 4t b2
T Xo(z) T 1+ A(zY) T 1+aizl4apr it gz

where X°(z) and Y°(2) are the Z-transformations of z°(k) and y°(k) respectively. If we define
¢ as the shifting operator such that

¢~ [a(k)]) = 2(k - 9),
the system can be expressed by the difference equation
[1+ A(g™)]y°(k) = B(g™")a(k) (2.16)

where

B(¢™!) bo+b1g7  +bag72 4o+ bug™
Alg™) = ag ' +ag i+t ag
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The observed output data contaminated by the noise source n(k) is
y(k) = 9°(k) + n(k). (2.17)
Substituting (2.17) into (2.16), the system equation becomes
[1 + A(g™)ly(k) = Blg™")a"(k) + o(k) (2.18)

where
v(k) = [1 + A(g"V)In(k). (2.19)

The problem of z-domain system ID is now to estimate the parameters a; and b; in (2.18)
from the observed input-output samples {z°(k)} and {y(k)}. Many methods are possible to
_ solve the problem. Among them least squares (LS) algorithms [44]-[50] that are the most
popular methods will be discussed. The ordinary LS algorithm which usually leads to a bi-
ased estimate and the generalized LS (GLS) algorithms where the bias is compensated using
noise whitening filters are investigated, and their performances are evaluated through extensive

simulations.

2.4.1.1 z-domain Least Squares Algorithm In the 2-domain LS method the
well-known LS algorithm is directly applied to (2.18). The equation can be rewritten as

y(k) = —A(g™)y(k)+ B(g™")2(k) + v(k)
= $16+v(k)
where
¢r = [—y(k=1),- -, —y(k - n),2°(k), -, 2°(k = m)]"
6 = [afh' : "ansb01' : '1bm]T-
With a set of N measurements at & = 1,2,3,...,V, we can have the following matrix equation:
y=®0+v (2.20)
where
y = [y(n + 1)) y(n + 2)v o ',y(N)]T
v = [v(n+1),v(n+2), -, o(N)T

$ = [¢n+l)¢n+2" ) "¢N]T
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or ) -
y() o =u(l)  @(nt1) o eo(n-met1)

5= ~y(n+1) --- -4(2) z°(n+2) -+ z°(n—m+2)

|y -1) e g -m) () e eV - m)

The dimension of matrix @ is (N —n) X (n+m+1). The LS estimate of @ can be obtained

by minimizing the sum of squared errors, vI'v, with respect to 8. By solving

™) _
00 ’
the LS estimate is given by
0rs = (87®)'ay. (2.21)

From (2.21) and (2.20), the LS estimate can be rewritten by
Ors = 0+ (@Te) 8Ty
= 0+ &ty

where ®1 is the pseudoinverse of ®. Thus, the bias of the z-domain LS estimate becomes

b = E[65-6)
= E[fLs]-0
= E[®lv],

where E is the expectation operator. If ® and v are statistically independent and E[v] = 0,
then the LS estimate &g is consistent and unbiased [45). However, the residual vector v is
usually correlated with the matrix & even when the output noise {n(k)} is an uncorrelated
white noise sequence. The biasedness of the ordinary LS estimation has been explicitly shown

in [55] and [46].

2.4.1.2 z-domain Generalized Least Squares Algorithms To compensate for
the bias of the LS estimate, it is assumed in 2-domain GLS algorithms that the residual v(k)
is the output of a linear filter with a white Gaussian noise input e(k). Generally, v(k) can thus
be modeled as an autoregressive moving-average (ARMA) process, i.e.,

-1
o(k) = 1:%+(q21)e(k). (2.22)
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Since it has been shown in [65, Section 8.6] that the AR model (where D(g™!) = 1) is superior
to the ARMA model or the MA model (where C(g~!) = 0) from the viewpoint of stability and
computational efficiency, the AR model based on [51] and a simple modified MA model based
on [61] are investigated.

First, if v(k) is modeled as a pth-order AR process

[1+4 C(g7V)]v(k) = e(k) (2.23)

where
Clg)=cigt +eag 2+ +eng™?,

then by combining (2.23) and (2.19),
[1+ A(g™)I[L + C(g7")]n(k) = e(k).

The coefficients of C(¢~!) should be determined such that [1+ A(g™!)][1+ C(g~1)]n(k) becomes

a white noise sequence with zero mean. Defining the following;

c = [er ez, )T

e = [e(p+1),e(p+2),---,e(N)]"

zr = [~v(k—1),—v(k—2), -, —v(k—p)T
Z = [2p+1,2ps2, s 2N),

we have
v=2Zc+e.

The vector ¢ can be obtained by a LS estimate
&= (272)'2%v. (2.24)

Combining (2.23) and (2.18), we have the new system equation

[1+ A(g™))L + C(a™)y(k) = B(g7')[1 + C(g™")]z°(k) + e(k). (2.25)

By defining
g(k) = [1+C(a (k) (2.26)
8°(k) = [1+C(q="(k), (2.27)

(2.25) becomes
[1+ A(g™)i(k) = B(q™")z°(k) + e(k).
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We can have a modified matrix equation
y=%0+e

and the new LS estimate

0= (78)187y. (2.28)
Now, it is clear that the new LS estimate of @ will be consistent because the new system model
has an uncorrelated residual error vector e. The standard proofs of consistency for LS estimators
rely upon the uncorrelatedness of the residual error vector [53]. In most GLS algorithms the
parameters of the system, a; and b;, and the parameters of noise model, ¢; are alternatively

estimated in an iterative process. The iterative procedure is as follows:
Step 1 Set C(¢~!) = 1.

Step 2 Form § and &° using equation (2.26) and (227)

Step 3 Obtain the LS estimate using equation (2.28).

Step 4 Stop if converged.

Step 5 With A(g~!) and B(q™!) estimated, compute the residual {v(k)} using equation (2.18)
and then estimate C(g~!) using equation (2.24). Go to Step 2.

This GLS algorithm based on the pth-order AR model will be denoted as GLS(ARp).
In the second method v(k) is modeled as a modified MA process

v(k) = [1+ A'(q™")le(k) (2.29)

where A’(g~1) is the previous estimate of A(¢™!) and thus the coefficients of A’(g~!) are simply
obtained from the previous estimate §. From equation (2.19) and (2.29)

_ 1+ A(g7Y)

n(k) = 1+A(q‘1)e(‘k)'

If this algorithm converges, then A’(¢g™!) converges to A(¢~!). Thus, the algorithm will work
very well when {n(k)} is a white noise sequence. This GLS algorithm based on the modified
MA model will be denoted as GLS(MAp), where ‘p’ does not represent the order of the noise
model as in GLS(ARp) but implies that the model parameters are obtained from the previous
estimates. The iterative procedure for GLS(MAp) can be readily formulated using the similar
method as that for GLS(ARp).
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2.4.1.3 Simulation Results The z-domain LS algorithm and GLS algorithms are
compared through computer simulations. First, the characteristics of the noise associated with
the system and the measurement process should be assumed for simulations. We will consider
three cases as shown in Fig. 2.9.

In Model 1, output samples are corrupted with the additive correlated noise which is the
output of a noise shaping filter when the input is a white Gaussian noise e(k). In Model 2,
output samples are corrupted directly with a white Gaussian noise e(k), which is one commonly
encountered case in system ID. In Model 1 and 2, only output samples are noisy and the input
samples are assumed to be observed without any noise. However, there are many practical
situations where the input as well as the output can not be observed without noise. These
cases are simulated with Model 3 where the input and output samples are contaminated with
white Gaussian noise m(k) and n(k), respectively.

A second-order system of which the transfer function is

1.0 -
1.0 — 0.52-1 4- 0.522

is chosen for simulations. The ideal 2-domain parameter polynomials and the ideal parameter

T(2) =

vector are thus

A(z™') = —0.52z7140.5272
B(z"') = 1.0
0 = [-05,0.5,1.0]7

The input {z°(k)} is a sequence of independent Gaussian random variables with unity variance
(0% = 1.0) and zero mean. A noise z-domain parameter polynomial C(z~1) = 0.72~! is chosen
for Model 1. The zero mean independent Gaussian random noise e(k), m(k), and n(k) have
the same variance o2.

From 300 input-output samples (data length N = 300), the parameters of the system were
estimated using three different algorithms for three different noise models at various signal to
noise ratios (SNR). The SNR in dB is defined as 10log(¢2/02). The simulated sample mean of
squared estimation errors (E,[07 0,)) are shown in Fig. 2.10 (a), (b), and (c) for noise model 1,

2, and 3, respectively. The sample mean operator E, is defined by
1
ES[X] = -N—(XI +X2 + . .+ XN’),
S
where N, is the sample size. The estimation error vector 8, is

0.=6-0.




Figure 2.9:
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The iteration limit for GLS methods was set to 10. Every result was computed from 100
independent simulations, which means that the sample size is 100.

In most cases GLS algorithms show better results than the ordinary LS algorithm, which
implies that the bias is reduced by using GLS algorithms. For noise model 1, the GLS algorithm
using first-order AR model, GLS(AR1), gives the best results since the real output noise was
assumed in noise model 1 such that the residual v(k) of the system equation became an AR pro-
cess. As expected, the GLS algorithm based on the modified MA model, GLS(MAp), exhibits
the best results for noise model 2. On the other hand, the bias reduction by GLS algorithms is
not good for noise model 3 compared to that for noise model 1 or 2. The GLS(AR1) still shows
better performance for all simulated noise levels than the LS algorithm. The convergence rate
of z-domain GLS algorithms are shown in Fig. 2.11. The iteration number 0 corresponds to the

results of the LS algorithm. For most cases, the GLS algorithms converge within 5 iterations.

So far, we have investigated only the GLS algorithms using AR and modified MA models.
However, the residual can be modeled as a pure MA model or an ARMA model as shown in
(2.22). To compare them, the GLS algorithms using a second-order MA model GLS(MA2) and
using a first-order ARMA model GLS(ARMAL1) were simulated and their results are depicted
in Fig. 2.12. The methods to estimate the parameters of the MA and ARMA models can be
found in [65, 66, 45]. The simulation results indicate that the GLS algorithms show similar
performance and that they give better results than the LS algorithm.

2.4.2 s-domain System Identification

As shown in Fig. 2.7, the s-domain system ID uses a set of frequency response data (gain
and phase responses) to estimate the coefficients of a model T'(s). In this section s-domain least
squares algorithms are investigated as frequency-domain parametric continuous-time system ID
methods.

Linear time-invariant continuous-time systems can be expressed as (n > m)

B(s) _ bo + 18+ bos2 ++ oo byps™

T(s)= 14+ A(s) ~ 14ais+azs?+-++-4azs®’

In many cases, frequency response data can readily be obtained or measured, but some mea-
surement errors are unavoidably involved which is shown in Fig. 2.13. By using s = jw, the

ideal system equation can be expressed in terms of jw.

[1+ A(w)T(jw) = B(jw) (2.30)
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Figure 2.10: z-domain system ID results. Sample mean of the squared parameter estima-
tion error (E;[676.]) versus input signal to noise ratios in dB computed from
100 independent simulations (Data length N=300) with actual system noise
models (a) Model 1
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Figure 2.11: Rate of convergence of z-domain system ID algorithms (y-axis: 876., input
signal to noise ratio SNR=3.0 (dB), data length N = 300)
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Figure 2.12: Performance comparison of z-domain LS algorithms with an actual system
noise model of Model 3. The sample mean of the squared estimation error
(E;[6F6,]) were computed from 100 independent simulations with data length
N =300
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Figure 2.13: Basic system configuration for s-domain system ID

where

A(jw) a1(jw) + az(jw)? + - - - + an(jw)"
B(jw) = bo+ bi(jw)+ ba(jw)® + « - + by (jw)™.

The observed data Ths(jw) which can be obtained from measured gain and phase responses are
contaminated by n(jw).

Tu(jw) = T(jw) + n(jw). (2.31)
It is assumed that n(jw) is an independent zero-mean additive complex random noise. Substi-

tuting (2.31) into (2.30), the system equation becomes
[1+ A(jw)]Tm(jw) = B(jw) + v(jw) (2.32)

where
w(jw) = [1 + Ajw)ln(jw). (2.33)

The problem of s-domain system ID is now to estimate the parameters a; and b; in (2.32)
from the observed data Tps(jw). Ordinary least squares (LS) algorithms and generalized least
squares (GLS) algorithms have been used for the z-domain system ID in the previous section. As
s-domain counterparts, the algorithms are applied for the above s-domain system ID problem.
These s-domain LS and GLS algorithms are comparatively investigated based on the robustness

and efficiency.

2.4.2.1 s-domain Least Squares Algorithm At w = wy, equation (2.32) can be

rewritten as

Tm(jwr) = —A(jwr)Tm(Gwi) + B(jwr) + v(jwk)
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= %0+ v(jw)
where
b = [~(wr)Tm(Gwe), - -, —(Jwr)" T (Gwr), 1, (Jwk), - -+ (Gwr)™T
6 = [ala . ',anabﬂv o '7bm]T-

With a set of N measurements at wg, &k = 1,2,3,...,N, we can have the following matrix

equation:
where
y = [Tu(Ger), Tm(jws), - Tu(jon)T
v = [v(jwl),v(jw2)7’"vv(ij)]T
@ = [, ¢ 20N
or } .
—(jw)Tm(jwr) -+ =(w)"Tm(w1) 1 (Gwi) -+ (Gw)™
5 ~(jw2)Tm(jwz) --» —(jw2)"Tm(jw2) 1 (jw2) --- (jw2)™

| —(Gwn)Tm(Gwn) - —(jon)"Tu(wn) 1 (Jun) - (Gun)™ |

The LS estimate of @ can be obtained by minimizing the sum of squared complex errors,
v*v (* denotes the complex conjugate transpose), with respect to 8. Thus, one substantial
difference between the s-domain and z-domain LS equations is that the cost function of the
s-domain LS estimation is in the frequency domain while the cost function of the 2-domain LS

estimation is in the time domain. By solving

o(v*v) _
96 "
the LS estimate is given by
015 = [Re(®*®)]" Re[@"y]. (2.35)

From (2.34) and (2.35), the LS estimate can be rewritten by

0Ls = 0 + [Re(®"®)] "' Re[®"v].




35

Thus, the bias of the s-domain LS estimate becomes
E(B1s — 6) = E{[Re($*®))"  Re[@"v]}.

It can be seen that the ordinary LS method gives a biased estimate since @ and v are not
statistically independent. It should be noted that the matrix @ also contains observed noisy
data, and ®*® is quadratic in the data and hence éLs is nonlinear in the data. This s-domain
ordinary LS algorithm is often called Levy’s method [52]. To reduce the bias introduced in the

LS method, s-domain GLS algorithms are presented in the next section.

2.4.2.2 s-domain Generalized Least Squares Algorithms To compensate for
the bias of the LS estimate, it is assumed in s-domain GLS algorithms that there possibly exists
a H(jw) satisfying

H(jw)o(jw) = e(juw). (2.36)
such that {e(jw)} is a white complex noise sequence with zero mean. Combining (2.36) and
(2.33),
H(jw)[1+ A(jw)ln(jw) = e(jw).

If an appropriate way to obtain the H(jw) can be found, then the system equation (2.32) can
be modified as

H(jw)1 + A(jw)lTm(jw) = H(jw)B(jw) + e(jw).

At w =wy
H(jwr)Tr(jwi) = — H(Gwi) A(Gwi ) Trm(Gwi) + H(wi) B(jwk) + e(jwk).

Defining the follows:

e = [e(jwr)e(jwz),: s e(jon)]

¥ = [Tm(e)H(Gwr), -, Tu(Gwn)H(Gwn)]" (2.37)
¢r = HGwe)-(wr)Tm(Gwr), -+, —(Gwr) T (Gwr), 1, (Gwr), -+ (Fur)™]T (2:38)
é = [f1sr NI, (2.39)

we have a modified matrix equation

y=90+e

and the new LS estimate is
0 = [Re(®*®)]~! Re[®*7).
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Now, it is clear that the new LS estimate of @ will be consistent if the equation (2.36) is satisfied
because the new system model has an uncorrelated residual error vector e.

The remaining problem is how to determine H(jw). Two methods will be presented.
One is called s-domain GLS since it is similar with the s-domain GLS method using an AR
residual model. The other can be referred to as the s-domain counterpart of the z-domain
GLS algorithm, GLS(MAp), and will be called s-domain modified GLS (simply M-GLS). This
modified GLS algorithm is actually equivalent to the iterative complex LS algorithm presented
in [9].

In the s-domain GLS algorithm, the H(jw) is modeled as

H(jw) =14 C(jw)
and thus
(14 C(jw)lv(jw) = e(jw), (2.40)

where
C(jw) = e1(jw) + ca(jw)? + -+ + ea(jw)P.

It is assumed that the system is stable such that the roots of [1 + C(jw)] lie left the jw axis.
The unknown parameters ¢; are iteratively estimated by the ordinary LS method. Equation

(2.40) is rewritten at w = wy as
v(jwr) = ~C(jwr)o(jwr) + e(jwr)

Defining the following:

c = [c1,02,~-,c,,]T

e = [e(jwi),e(jws), -, e(jwn)]T

ze = [—(jwr)v(jwr), -y —(Gwr)Po(juwr)]”
Z = [21,22,"'12N]T,

we have

v=2c+te,
and the LS estimate of the parameter ¢; is given by
¢ = [Re(Z*Z)]"'Re[Z"v].
In the second GLS algorithm (M-GLS), the H(jw) is modeled as

H(jw) = 1/[1+ A'(jw)),
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where the coeflicients of A/(jw) are simply replaced by those obtained from the previous estimate

#. Now we have

w(jw) = [1+ A'(jw)le(jw)

i) = TEgintio)

If this algorithm converges, then A’(jw) converges to A(jw) and thus, sequence {e(jw)} ap-
proaches {n(jw)}. This algorithm is very simple and efficient since the computational require-
ment is much less than that of the GLS algorithm where two LS estimations are needed every

iteration.

The iterative procedure for the s-domain GLS and M-GLS methods are as follows:
Step 1 Set H(jwx)=1fori=1,2,...,N.
Step 2 Form & and § according to equation (2.37)-(2.39).

Step 3 Obtain the LS estimate
0 = [Re(®*®))* Re[®"¥].

Step 4 Obtain H(jw)

GLS Generate v(jw) from (2.32) using the previous estimate 0, and compute the LS
estimate of ¢
& = [Re(Z"Z))" Re[Z*V]

and then compute H(jwg) for k= 1,2,..., N using
H(jwg) =1+ C(jwy).

M-GLS Obtain coeflicients a; from the previous estimate @ and compute A'(jwe), and

then compute H(jwy) for k= 1,2,..., N using
H(jwi) = 1/[1 + A'(jw)).

Step 5 Go to Step 2 and repeat until convergence is obtained.
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2.4.2.3 Simulation Results In this section the s-domain LS, GLS, and M-GLS
algorithms are compared through extensive simulations based upon the bias and consistency of
their estimates. The test system is a second-order lowpass notch filter which has the following

ideal transfer function:
0.419080 + 0.176000s2

T(s) = 1.0+ 0.101413s + 1.005084 2
The ideal parameter vector is thus

a | [ o0.101413
ag 1.005084
6= b, | =| 0419080 |- (2.41)
by 0
| 5 | | 0.176000 |

The noisy observed data Tas(jwg) are generated from the ideal frequency response data T'(jwg)
which are added by a random complex noise n(jwy) where Re[n] and Im[n] are uncorrelated
and uniformly distributed with zero mean and variance oZ. The frequency response data are
sampled at equally spaced normalized angular frequencies from 0 to 2.

The solutions of the s-domain LS problems as well as the z-domain LS problems of the
previous section are computed using the singular value decomposition (SVD) method. The SVD
method fixes the roundoff problem from which other direct methods using LU decomposition
and Gauss-Jordan elimination usually suffer. Moreover, the SVD method can also cure the
ill-condition problems of the matrix to be inverted [54].

One typical simulation results with o, = 0.1732 are given in Fig. 2.14 where the conver-
gence rate of GLS and M-GLS algorithms at two different data sizes are shown. The iteration
number 0 corresponds to the results of the LS algorithm. The y-axis is the sum of squared
estimation error, i.e., 03'03. The estimation error vector 8, is defined as before, i.e., 8. = 6 — 0.
Both the convergence rate of GLS and M-GLS are very fast and converge after two iterations
which is faster than that of 2-domain GLS algorithms. It can also be clearly seen that the
GLS and M-GLS algorithms give much better results than those of the LS algorithm. In this
simulation very significant noisy data (o, = 0.1732) are used to more clearly differentiate the
results of the three algorithms. The significantly contaminated frequency response data and
the ideal gain response of the notch filter are shown in Fig. 2.15. The identified gain responses
are shown in Fig. 2.16 with the actual response for comparison. Fig. 2.16(b) is a magnified one
of Fig. 2.16(a). Even with a very high level of noise, the GLS and M-GLS algorithms give good
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results while the LS algorithm results in a poor estimation.

In order to investigate the consistency of those algorithms, the sample mean of the squared
estimation error E,[OZ'O.,] was computed from 100 independent simulations (sample size N, =
100) at different data length from N = 50 to 500. In this simulation the standard deviation of
the noise was set to 0.029, and the iteration limit for the GLS and M-GLS algorithm was set
to 5. The results are shown in Fig. 2.17. An estimate  of the parameter vector @ is consistent
[63],[45] if in the long run, the error vector 8. approaches the zero vector or alternatively the

mean squared error E[aeTo.,] approaches zero, i.e.,
]vh_l}lw E[oC] =0.

or
Jim E[6T6,] = 0,
where N is the data length. An estimate @ is said to be unbiased if the expected value of the

estimation error vector 6, is zero for all N [53],[45], i.e:,
E[6.]=0 foral N>n+m+1

The plots in Fig. 2.17 show that the sample mean squared errors of the GLS and M-GLS
estimates decrease much faster than than that of the LS estimate as the data length increases
up to 500.

To compare their estimation accuracy and the level of bias, the sample mean and variance
of parameter estimation errors have been computed from 500 independent simulations. The
absolute values of the sample means of 500 parameter estimation errors, |E,[fi]|, are shown
in Fig. 2.18(a), where 6.;’s are the individual elements of the error vector 8.. Their variances
calculated using (E;[0%] — E2[f;]) are also shown in Fig. 2.18(b). Although the individual
parameters (a1, ag, bo, b1, b2) may have different units and thus their means and variances
can not be compared together, they were plotted with the same y-axis for convenience. In this
simulation the following conditions were used: noise standard deviation ¢, = 0.029, data length
N = 50, and iteration limit=5. It can be seen from Fig. 2.18(b) that the estimation accuracy
is the best in the M-GLS algorithm. These simulation results indicate that among the three
s-domain system ID algorithms, the M-GLS algorithm is the most robust.

2.4.3 s-to-z and z-to-s Transformation

The s-to-z transformation has been one of important parts in digital filter and digital

control system design where the well-established information of continuous-time filters and
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continuous control systems is utilized. The 2-to-s transformation is also required for many
areas, especially for indirect continuous-time system identification (see Fig. 2.7). Many methods
such as numerical integration, pole-zero mapping, and hold equivalents, have been reported in
the literature [53, 60, 59] for both transformations.

In this section a new approach to the transformation problem is presented. As depicted
in Fig. 2.19, complex least squares algorithms can be applied to solve the problems. The s-
to-z transformation < 7 > can be decomposed into two steps through path < 9 > — < 5 >
where the frequency samples {T'(jwy)} are directly calculated from the known s-domain transfer
function T'(s), and then the LS algorithm is used to estimate the parameters of the equivalent
z-domain model from the frequency samples. This approach will be called a complex LS s-
to-z transformation method. The 2-to-s transformation < 6 > can also be decomposed into
< 8 > — < 4 > where the frequency samples {T(e’“*T)} can be obtained from the known
z-domain transfer function T'(2). These frequency samples can be fed into the LS algorithm
to estimate the parameters of a s-domain model such that the estimated s-domain model can
approximate the z-domain transfer function as well as possible. This approach will be called a
complex LS z-to-s transformation method of which the algorithm is actually equivalent to the

s-domain system ID algorithm presented in Section 2.4.2.
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2.4.3.1 Complex LS s-to-z Transformation Method The problem of s-to-z
transformation is that given a continuous-time transfer function T'(s), determine the discrete-

time transfer function T'(2~1),

B(z™1)
14 A(21)
such that they have approximately the same characteristics. Equation (2.42) can be rewritten

T(z"™!) = (2.42)

as

(14 A(e™7T)|T(e~*T) = B(e™T) (2.43)
where T is the sampling period. From the given T'(s), we can calculate the complex frequency
response data T'(jwg) for & = 1,2,3,..., N. Since we want T(jw) and T(e=7“T) to be as close as
possible in a frequency range of interest, by replacing T(e~/“T) in equation (2.43) with T'(jw)

we have for w = wy,
T(jw) = —A(e™*T)T (jwr) + B(e™*T) + v(jwi)

where v(jwy) is the residual which should be minimizéd. For N different frequencies, we have

the following matrix equation:

y=%0+4v
where
= [T(jwr), T(jwa), -+, T(jwn)T
= [v(jwr), v(jwa), - - -, v(Gwn)]T
= [ah - '7amb0a M ',bm]T-
and
. _e—jwlTT(jwl) '. . —e—jw’"TT(jwl) 1 e—jwlT ver emiwmT
—e~ 3 TT(Guw,) - —e~ W TP (Gu,) 1 e iweT ... e~ jwemT
P =
_e—ijTT(ij) cen _e—jWN"TT(ij) 1 e"ijT e e—'ijmT

Now we can obtain a LS estimate
OLs = [Re(®*®)]" ! Re[®*y]. (2.44)

The elements of @ are the coefficients of the z-domain model. The estimation can be improved
by using an iterative procedure similar with the M-GLS algorithm presented in the previous

section.
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To investigate the performance of the proposed method, a second-order s-domain filter of

which the transfer function is
1

1+s+s%
was transformed, and the results were compared with those obtained by the well-known bilinear

T(s) =

transformation with prewarping. The transformed z-domain gain and phase responses and
their absolute deviations from the s-domain responses are shown in Fig. 2.20 and Fig. 2.21 for
ws/wyp = 207 and for w;/w, = 27, respectively, where w; is the sampling frequency and w, = 1
is the pole frequency.

The critical frequency for prewarping in the bilinear transformation was set to wy. A set of
100 frequency samples were uniformly selected from the normalized frequency range of 0 to 0.8
for the complex LS s-to-z transformation and the iteration limit was set to 5. The transformed

z-domain transfer functions are as follows:

e Prewarped Bilinear Transformation with T = 0.1

Ty(z) = 2.37915764¢ — 03 + 4.75831529¢ — 03z~ + 2.37915764¢ — 0322
! ~ 1.00000000e + 00 — 1.89539638¢ + 002~1 + 9.04913013¢ — 0122

e Complex LS s-to-z Transformation with 7= 0.1

8.31715104e — 04 + 7.92425606¢ — 03z~ + 7.52360402¢ — 0422

To(=™) = 1.00000000e + 00 — 1.89532901¢ + 00z~ + 9.04837342¢ — 0122 (243)
e Prewarped Bilinear Transformation with T' = 1.0
Ty(2") = 1.61781590e — 01 + 3.23563180e — Olz:1 + 1.61781590e — 0122
1.00000000e + 00 — 7.60595211e — 0121 + 4.07721571e — 0122
e Complex LS s-to-z Transformation with 7’ = 1.0
Ty(z1) = 7.41585933¢ — 02 + 4.88408867¢ — 012! + 1.75869912¢ — 0222 (2.46)

~ 1.00000000e + 00 — 7.83985434e — 0121 + 3.64119370e — 012~2

It can be seen that the complex LS s-to-z transformation gives much better results than
the prewarped bilinear transformation in most frequencies of interest except for dc and Wp.
Note that wp was the critical frequency for prewarping. At a high sample rate w,/w, = 207
(T = 0.1), both methods give fairly good results. However, at a low sample rate w,/w, = 2T
(T = 1.0), their performances are degraded. It has been observed from extensive computation
that in the complex LS s-to-z method, the performance improvement with iteration is almost
negligible, and the number of the frequency samples also has little effect on the performance.

Except for the sample rate, the factor that can affect the performance is the frequency sampling
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range. Thus, the frequency sampling range should be carefully selected such that it can cover
the frequency range of interest.

The complex LS s-to-z method is very attractive because it performs very accurate trans-
formation. In the frequency range of interest, it offers improvements in accuracy by well over
two decades for ws/w, = 207 and one decade for w,/w, = 21 compared to the popular bilinear

transformation method.

2.4.3.2 Complex LS z-to-s Transformation Method The problem of 2-to-s
transformation is that given a discrete-time transfer function T'(2~1), determine the continuous-
time transfer function such that they have approximately the same characteristics. For this
problem, we can use the s-domain system ID algorithm, M-GLS, presented in the previous
section with the frequency sample data directly computed from the given z-domain transfer
function. The parameter estimation of a model T'(s) can be obtained at each iteration from

equation (2.44) where

[T(e"ijT), T(e—:isz)’ s ,T(e_ijT)]T

;-
0 = [ah"'aan,bOa"'sbm]T-
and
[ —(o)T(e Ty o ()P T(eT) 1 () e (o)™ |
o | “GONTE T o T T) 1 G e ()"
| (W) T(eNT) o () T(e ) 1 (uw) - (o)™ |

The elements of @ are the coefficients of the s-domain model.

This complex LS 2-to-s method is applied to the 2-domain transfer function in (2.45) and
(2.46) and the results are compared with those obtained from the bilinear transformation. The
transformed s-domain gain and phase responses are shown in Fig. 2.22 for w,/w, = 207. In
Fig. 2.23 the absolute gain and phase errors are shown for w,/w, = 27. A set of 10 frequency
samples were uniformly selected from the normalized frequency range of 0 to 1.0 for the complex
LS s-to-z transformation and the iteration limit was set to 1.

As in the complex LS s-to-z transformation, the performance of the complex LS s-to-z
method has little to do with the iteration number and the number of the frequency samples

but gives much better results than the bilinear transformation. This indicates that the complex
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LS methods can accurately perform the s-to-z or z-to-s transformations with only one matrix
inversion and with a few frequency data. Of course, the number of frequency samples must be
greater than or equal to m+n+ 1 where n and m are the order of denominator and numerator,
respectively.

In section 2.4.1 several LS methods have been discussed for estimating the parameters of
a z-domain model from the input-output sample data. The next step of the indirect method
2 is thus to estimate a s-domain model from the identified 2-domain model. The complex LS

2-to-s method can thus be applied to this problem very well.

2.4.4 Frequency Response Measurement Methods

Frequency response measurements at discrete frequencies are required for continuous-time
system identifications (see Fig. 2.7 path < 3 >). Accurate frequency response measurements
are crucial, since the accuracy of frequency response measurements directly affects the accuracy
of the continuous-time system identification through tﬁe indirect method 3. The measurement
circuit implementation cost as well as the accuracy should be taken into account because the
cost and the accuracy are usually in a trade-off relation.

Two frequency response measurement algorithms have been reported in literature. They
use sinusoidal inputs and collect input and output time-domain samples for further interpreta-
tion. One uses FFT algorithms [53], and the other uses least squares algorithms [67] based on
a first-order moving average (MA) model to estimate the frequency responses. A least squares
(LS) algorithm based on a first-order auto-regressive moving average (ARMA) model has been
presented and compared with the two algorithms mentioned above through extensive Monte
Carlo based simulations [4]. The FFT method requires a large number of consecutive samples
and thus, requires high-speed A/D converters and sample-and-hold circuits. In contrast, in the
least squares methods each data set contains only a few consecutive input-output samples, and
each set can be grabbed randomly or asynchronously. Thus, the least squares method requires
lower cost for data acquisition hardware implementation than the FFT method.

If a linear continuous-time system is excited by a sinusoidal input
z(t) = Acos(w,t), (2.47)
then the output, in the steady state, can be described by

y(t) = GAcos(w,t + ¢),
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where G and ¢ are the gain and phase responses of the system at frequency w,. The general
frequency response measurement problem is to find G and ¢ at a finite number of frequencies.
Since experimentally obtained data are inevitably contaminated by some noise and system

nonlinear effects, a reasonable approach is to find G and ¢ which best fit the given data.

2.4.4.1 FFT Method In the FFT method [53] the input and output are recorded
for Ny sample sets at sampling frequency f, = 1/T; from which the frequency response at one
point is calculated. Each set contains two samples. N; must be a power of 2. The output

estimate can be defined as
Y(kTs) = Gecos(wokTs) + Gysin(wokTy),
where
G. = GAcos(¢) (2.48)
G, = —GAsin(¢). (2.49)

It can be easily seen from (2.48) and (2.49) that if G. ,G; and A are found, then the gain and

phase responses can be calculated by
1
G Z\/ G? +G?

¢ —tan~! (%:) .

The estimated G, and G, which best fit to the data in the least squares sense are closely
related to the DFT/FFT of y(kT,) if the test frequencies are selected to be w; = 2wl/(N;T,)
for integer [, ! = 1,2,.... The DFT/FFT of y(kT;) is

N onlk .
Y,=FFT(y) = z GAcos (___ + ¢) e—J(2mnk)/Ny
k=0 N.f

816G, - jG,), n=1
0, n#l

The DFT/FFT of the input z(kT}) is given by

iy ik _;
Xn = FFT(z) Z Acos (T) e—i(2mnk)/Ny
k=0 f

NyA

=, n=I

0, n#l
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For n = [, the ratio of ¥} to X; is given by
Y _ Ge-iGs
X A
= Ge'®,
Thus, in the FFT method the gain and phase responses at w; = 2wl/(NT;) are obtained by
the ratio of the FFT of y(kT,) to the FFT of z(kT,) for n = L.

The FFT method estimates the frequency responses accurately in a fast way by the effective
FFT algorithm, but using the FFT on y(kT,) and z(kT,) for only one frequency point is
somewhat inefficient. This inefficiency can be alleviated by using a linearly frequency sweeping
signal [40] or a chirp signal [53] of which the frequency changes from a starting value to a final
value so as to estimate the frequency responses at several frequencies at once. However, the
accuracy might be degraded at fixed Ny compared to that of the original method. Since the
FFT method uses a large number of consecutive data, a fast data acquisition system is required

for high frequency measurements to avoid the aliasing problem.

2.4.4.2 LS Method with a MA Model In this algorithm [67] a first-order MA
model is used to determine the gain and phase responses using the LS algorithm. If the input
z(t) is sampled at t = ¢, and t = ¢, — T, and the output y(¢) at ¢ = ¢, , then the relationship

between the output and input samples can be given by
Y(to) = box(to) + brz(ts — T), (2.50)
where

bo = Glcosd+ singcot(w,Ts))
b = sing
vT sin(woTs)’

Equation (2.50) is valid for all ¢, provided w,Ts # nw for integer n. By taking the Fourier

Transformation on (2.50) the frequency response at w, is given by
Gei® = bg + bye~weTs,

If there is no measurement error, only two data sets are enough to determine by and b; and
thus, the frequency response exactly. Taking into account the measurement errors, a number of
data sets can be used to perform the LS algorithm. This gives an estimation of by and b; which

best fit to the given data. The estimated coefficient vector can be described by a LS solution

¢ = [ATA][ATy], (2.51)




57

where & = [bg,5]T and A = [xg,X_1], and x_; is a sampled input vector, and xo and yo are
the input and output data vectors sampled with a delay T,. Vectors, xp, x_1 and yo have
dimension N,,, where N,, is the number of data sets, and each data set contains 3 samples.
In this method each data set contains only two consecutive input samples and one output
sample. Since the data sets can be collected randomly or asynchronously, the data acquisition
system can be implemented with three fast sample-and-hold circuits (two for input and one for

output) and a slow A/D converter.

2.4.4.3 LS Method with an ARMA Model To utilize a first-order ARMA model
for the LS frequency response measurement, one more output samples must be added to the
data set of the MA model. The input z(t) and output y(t) are sampled at ¢t = ¢, and t = ¢, — T
by four sample-and-hold circuits, and these four samples constitute one data set. Once all four
samples are converted by an A/D converter which does not have to be fast, another data set
is sampled with time delay T;,;. Of course, the time interval, T;,;, must be selected to be long
enough for the A/D converter to finish conversion of four sampled and held data. T;,; does not
have to be the same for the whole data acquisition period. The relationship between output
samples and input samples for any one data set can be readily obtained as follows by applying

basic trigonometric identities to (2.47) at t = ¢, — T}:
Y(to) = a1y(to — Ts) + boz(to) + brz(t, — Ts), (2.52)
where

a1 = 1/cos(w,Ty)
bo = Geos(woTs + ¢)/cos(w,Ts)
by = —Gcosd/cos(woTs).

Equation (2.52) is valid for all ¢, provided w,T, # (2n + 1)n/2 for integer n. The frequency

response at w, is given by .
bo + bye~IweTs

1+ aje—iweTs ’

The LS solution can be obtained from equation (2.51), where &, = [a1, bo,b1]7 and A =

Gel? =

[¥-1,%0,%—1], and x_; and y_; are sampled input and output data vectors, and xg and yo are
the input and output data vectors sampled with a delay T;. The vectors have dimension N,
where N, is the number of data sets, and each data set contains 4 samples. In this method the
data acquisition system can be implemented with one more sample-and-hold circuit added to

the system for the MA model.
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If the signals are sampled at the same rate for all data sets, i.e., Tin:=Ts, as in the FFT
method, then we can increase the number of data sets for the fixed total sample number. One
data set can be obtained at every sample time since one input and output sample set contributes
to two data sets as previous data and as current data. This is the case as the general time-
domain LS system identification methods do, where for the nth-order ARMA model N —n 41
data sets can be obtained with N input and output samples. For our first-order case, 2N,
data sets can thus be used for the LS problem with increased dimension 2/N,. This will lead to
improved accuracy, but more cost for data acquisition will be required to grab a large number
of consecutive data.

Since the cost and the accuracy are in a trade-off relation, one of the two strategies can
be selected according to which has a higher priority. This may be one advantage of the ARMA
method over the MA method because in the MA method the number of data sets can not be
increased that much through sampling with T;,; = T , or even though it can be increased by

adding one more sample-and-holder, one output sample can contribute to only one data set.

2.4.4.4 Simulation Results The three frequency response measurement algorithms
are compared through Monte Carlo based simulations. The nonidealities of the system under
test, the data acquisition system, and the excitation signals are included in this simulation. The
input-output measurement noise associated with the data acquisition process such as quantiza-
tion noise and system noise are modeled as uniformly distributed additive random numbers. If
the measurement noise is distributed as U(—e¢y,€,), and the input signal amplitude is A, then
the mean square values of the signal and the noise are
A2
2
The input signal to noise ratio (SNR) is then defined as

o2
1010g10 (-;,;:)
10[10910(1.5) - 210g10(A/€n)].
The SNR will be about 40dB for ¢, = 0.01 and A = 1. The excitation signal nonlinearity and

the system nonlinearity are approximated by the second harmonic distortion, and the higher-

order distortions are neglected. The total harmonic distortion (THD) of the excitation input

o? and o

SNR

signal and the output signal were set to —40dB.
The second-order lowpass notch filter used in Section 2.4.2.3 has been selected again to
compare the frequency response measurement algorithms. Fig. 2.24 shows the statistics ob-

tained from 100 independent measurements using the three measurement algorithms. The
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mean and standard deviation of the measured real and imaginary part errors are shown in
Fig 2.24 (a) and (b), respectively. The input signal to noise ratio (SNR) was set to 40dB.
If it is assumed that the measurement noise is dominated by the quantization errors of A/D
converters, then the 40dB SNR, corresponds to about 7-bit resolution for £1V reference levels.
The number of data sets was set to 64. The sampling period T, was chosen to be 1.5sec. The
simulation results show that the three algorithms have similar performance. More extensive
simulation results can be found in [4]. For a simple test lowpass filter the LS methods have
shown accurate measurement results at reasonable noise environment. For 40dB SNR and
—40dB THD, the gain error less than 1% and the phase error less than 1° were obtained on
the normalized frequency range from dc to 2 (rad/sec). Thus, these LS methods can be well
applied to the s-domain system ID algorithms. It has been demonstrated that the M-GLS (or
ICLS) algorithm can achieve good results for 1% measurement errors [9].

Although the FFT method has an advantage that it can measure a set of frequency response
data with a smaller number of input-output samples using a frequency sweeping signal, for high
frequency response measurement it requires higher cost for implementation of data acquisition
systems than the LS methods because it needs a large number of consecutive samples. In
contrast, the LS methods can be applicable with a low-cost data acquisition system as mentioned
earlier. Since the LS method based on a first-order ARMA model which is a more general model,
has more fiexibility associated with the number of data sets available from a fixed number of
input-output samples as mentioned before, and it is more insensitive to the system nonlinearity
which has been demonstrated in [4], it can be chosen to serve the second path < 3 > of the

indirect continuous-time system identification method 3.

2.4.5 Continuous-Time Filter Identification

In the previous sections we have discussed LS methods associated with general system
identification problems. It has been shown that for the continuous-time filter parameter iden-
tification, there are two possible indirect methods, i.e., Method 2 and 3, where the problem
can be decomposed into two simple steps. In Method 2, the generalized LS algorithm using
an AR noise model can be used for the first step since its better accuracy and stability have
been demonstrated for various actual noise models. The complex LS z-to-s transformation
method can be chosen to serve for the second part of Method 2 because of its superiority to
the well-known bilinear transformation in accuracy. Method 2 can thus accurately estimate the
parameters of continuous-time filters if the test input is a persistently exciting signal. A linear

system is said to be identifiable if the system is stable and the input test signal is persistently
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exciting. If the input test signal is persistently exciting of order (n + m + 1), the matrix $7®
will be nonsingular and thus the least squares solution, o= (8T®)" 18Ty, does exist. The
pseudo-random binary sequence (PRBS) or the linearly frequency sweeping signal can be used
for a persistently exciting test input signal for the z-domain system ID which is the first step
of Method 2. The PRBS which serves as a practical white noise signal can be generated from a
shift register circuit cascaded with a lowpass filter [55]. The linearly frequency sweeping signal
can be generated by applying a ramp or triangle signal to a voltage controlled oscillator circuit
[40].

Although Method 2 is one of the promising approaches to the continuous-time filter iden-
tification, it has a shortcoming when applied to the filters operating at high frequencies because
its 2-domain system ID algorithm requires a large number of consecutive samples. Therefore,
a fast and thus high-cost data acquisition circuit is required. For this reason, Method 3 will
be selected as the continuous-time filter ID method. In Method 3 the frequency response data
can be first measured using the LS algorithm based on a first-order ARMA model, LS(ARMA),
and secondly, the parameters of the filter are estimated using the s-domain system ID algo-
rithm, M-GLS or iterative complex least squares (ICLS) algorithm which has been shown to
be robuster than other algorithms discussed in Section 2.4.2. In this section, the combination
of the two parts of Method 3, LS(ARMA) and ICLS, are investigated.

In Section 2.4.2, it has been demonstrated that the ICLS (or M-GLS) algorithm is very
robust when the frequency response data are assumed to be corrupted with an independent
uniform noise sequence for both real and imaginary parts. If the frequency response data are
measured from the LS(ARMA) algorithm using input-output samples, the measurement noise
may not be independent. To investigate this, the lowpass notch filter used in Section 2.4.2.3 is
tested again. The identified results using the data measured by the LS(ARMA) algorithm are
shown in Fig. 2.25 and Fig. 2.26.

In this simulation the number of data sets for each frequency response measurement was
set to 50, and the frequency response data length for the s-domain system ID was also set to 50.
The THD of the input and output signals was set to —40dB. The SNR that has been defined
in Section 2.4.4.4 was set to 40dB for Fig 2.25. The absolute mean (|E,[f.;]|) and variance
(E,[0%) ~ E2[0e;]) of estimation error computed from 100 independent identifications are shown
in Fig. 2.25, where 6.;’s are the individual elements of the parameter estimation error vector
6. (9 — 0). Compared with the results of Fig. 2.18 which were obtained from ideal frequency
response data corrupted with independent uniform noise, the bias reduction schemes, GLS or

M-GLS, do not offer substantial improvements over the LS algorithm if the data obtained from
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the frequency measurement algorithm are used. This is due to the correlation of the frequency
response measurement errors. The mean squared estimation errors (E,[076,]) versus SNR
are shown in Fig. 2.26. At low noise environment the accuracy improvement by the M-GLS
algorithm over the LS algorithm is almost negligible. At high noise environment, however, the
M-GLS still shows better estimation results than the LS algorithm.

Fig. 2.25 shows that the system ID method using the LS(ARMA) and ICLS algorithms can
give very accurate identification results with a medium resolution A/D converter (SNR=40dB)
and an inexpensive excitation system (THD=-40dB). For example, the sample mean and
variation of 100 estimation errors are 0.036% and 28.8 ppm, respectively, for the parameter
b, of which the ideal value is given in equation (2.41). Since tuning accuracy depends on the
ID accuracy, tuned filters could maintain the ID accuracy if filter adjustments were performed
correctly. However, the tuning accuracy will be degraded by the limited resolution of the filter
control circuit (D/A converters) and the filter parasitic effects.

So far, the parasitic effects associated with the system to be identified has been neglected
so that the order of the system to be identified and the order of the model have been the same.
However, the actual continuous-time filter usually has a higher order due to the parasitic poles
and zeros as discussed in Section 2.3. In our case, the ID problem of the continuous-time filters
is thus to identify the over-ordered system with a reduced-order model because the system ID
model should have the same order as the desired one for a simple filter adjustment procedure
as mentioned before. Note that zero error in ID is not possible, and accuracy degradation is
expected because the ID is now approximating the over-ordered system. The accuracy degrada-
tion can be avoided if a higher-order model is used for identification of the over-ordered system.
Actually, it has been found from simulations that adding one more pole to the ideal model
leads to much better ID results. However, increasing the order of the system ID model will
result in a much complicated filter tuning/adjustment procedure due to loss of the independent
adjustability of the filter transfer function coefficients. Although they are complicated, there
may exist many ways to map the more accurate ID results obtained by using a higher-order
model to the control parameter values required for filter adjustment. However, we will not deal
with this approach here and will use ideal system ID models in order to maintain the filter
adjustment procedure very simple.

To investigate the effects of the over-ordering problem on the ID accuracy, the actual over-
ordered 4th-order notch filter has been identified using an ideal 2nd-order model. The gain
and phase responses of the ideal 2nd-order filter and the actual over-ordered 4th-order filter are

depicted in Fig. 2.27, where the over-ordering factor w,/wy, is 0.04.
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With the same conditions as before, the frequency responses measured from the LS(ARMA)
method and the identified responses from the M-GLS algorithm based upon the measured data
are also shown in the figure. Even with a significant noisy environment SNR=20dB, the ICLS
algorithm along with the LS(ARMA) algorithm can identify the over-ordered system with a
good accuracy using a lower-order model although it can be seen in Fig. 2.28 that the ID
accuracy is degraded as the over-ordering factor increases.

The reason why a 2nd-order model can approximate an over-ordered 4th-order system
accurately as shown in the above simulation results can be analyzed as follows. The 4th-order
system which is an over-ordered one of the ideal 2nd-order system due to over-ordering effects
addressed in Section 2.3 has parasitic poles typically at much higher frequencies than the system
pole frequencies, so the deviations of the system responses from the ideal responses are not
severe. Even in the presence of severe deviations due to high over-ordering effects, the iterative
complex least squares algorithm can identify the over-ordered system with a good accuracy
using an ideal low-order model. The reason seems to be that the ID model has full degrees
of freedoms for system ID, i.e., for a second-order case five coefficients can be used to identify

the over-ordered system, but most filter types except for allpass filters have missing terms
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in the numerator polynomial of their transfer functions. Therefore the identified coefficients
corresponding to the missing terms help to compensate for the errors due to over-ordering
effects. For example, the ideal transfer function of a 2nd-order bandpass filter does not contain
the constant and s? terms in the numerator, but the actual 4th or higher order system will be
identified with a 2nd-order model which has both constant and s? terms, so these terms can be
used for approximating the higher-order system. Thus, this system ID method can be simply
applied to our tuning scheme even for higher-frequency and high-Q applications.

The digitally programmable continuous-time filter under test, however, does not offer the
adjustability of s2 term in the numerator, so the model for system ID will have only 4 degrees of
freedom. Moreover, for a bandpass filter only 3 degrees of freedom can be used to identify the
over-ordered system because the constant term of the numerator does not have adjustability for
a small value due to the restricted g, adjustable range of the programmable filter . This will
degrade the system ID results. To investigate this problem the over-ordered 4th-order bandpass
filter with the over-ordering factor of 0.1 has been identified using two second-order models: a
5 degree-of-freedom (DOF) model and a 3 degree-of-freedom model without the s? term and
the constant term in the numerator. The identified results are shown in Fig. 2.29. It can be
seen in the magnified plots that the identification using a 3 DOF model gives degraded results.
The degradation can not be improved even with noiseless measurements because it is mainly

due to the model error.

2.5 Adjustment

In the previous section, various system ID methods have been discussed which estimate the
continuous-time filter model using time-domain input-output samples. It has been shown that
the combination of the s-domain ID algorithm, ICLS, and the frequency response measurement
algorithm, LS(ARMA), can serve as a good continuous-time filter ID method even in the pres-
ence of parasitics. Now, the remaining part of the tuning scheme is the filter adjustment using
the identified results as shown in Fig. 2.1. The procedure of obtaining the component correc-
tion vector AG can be very simple thanks to the independent or sequential transfer function

coefficient adjustability of the digitally programmable continuous-time filter.

2.5.1 Tuning Algorithm

The rudiment of the adjustment or tuning algorithm is to estimate the process dependent

parameters of the OTAs based upon system ID results and to determine the control parameter
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values for filter adjustment. In the digitally programmable continuous-time filter, the linearized
OTA proposed by Nedungadi [42] was used for the input transconductance stage to achieve
better linearity [39]. The schematic diagram of the OTA is shown in Fig. 2.30.

From [42], the control mechanism relating the OTA transconductance gain gnm; to its
control voltage V,; and current mirror gain M; for ¢ = 1,...,5, is characterized by the linear

equation
kiks
Imi(Veiy M;) = 2 T(Vci — Vas — Vi) M;

where k; and k; are the process dependent constants corresponding to input pair transistors
and bias transistors respectively, Vi; is threshold voltage, M; is the controllable output stage
mirror gain, and V; is the tail voltage which is the output of a D/A converter. The equation

can be rewritten as,

Imi(Veiy M) = Mymi(ki, k) [Vei + ni(Vri)) (2.53)

where .
mi(ki, k) = 2\ ’ k'ka (2.54)
(Vi) = —(Vis + Vi) (2.55)

The m; and n; are the process dependent parameters and the V,; and M; are the control
parameters for filter tuning. The OTA tail bias voltage V,; is used for smaller (fine) adjustment
while the output current mirror gain M is used for more significant (coarse) adjustment. Thus,
the transconductance g,,; of i’th OTA of each biquad can be controlled by changing V,; and M;.
The basic idea of the tuning algorithm is to calculate the control parameters V,; and M; for
filter adjustment such that the identified g,,; of each OTA becomes close to its design (nominal)
value. The identified g,; of each OTA can be obtained from identified coefficients through the
relations (2.4) to (2.7).

The tuning procedure is divided into three parts: initial implementation, first iteration,
and subsequent iterations. The whole tuning procedure flow chart is shown in Fig. 2.31. In
the initial implementation, the initial parameters m; and n; for i = 1,2,...,5 of each biquad
are set to their design values, and the initial control parameters V,; and M; are calculated.
These control parameter values are used for initial implementation of the filter. Each iteration

consists of four steps as follows:

1. System identification using the system ID method

2. Estimation of process parameters m; and n; from the identified transfer function coeffi-

cients
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Table 2.2: Expressions for m,(l), n,(l) and Vc(,-k)

I A 7

. ®&7/y/aC | () hC (k)
MOV | M| T

1

()
;Z“ ¢ 0) e ()
3 ° n 0 —n
MOV ) [ 73 m$F M} 3

3

®7+/a"C | () | Grvame _
MOV 4n”)

5 oo (0 50 ()
MOV 1) | 5 M; 5

3. Calculation of control parameters V,; and M; from the estimated m; and n;
4, Adjustment using the obtained control parameters

The estimation formulas of m; and n; for ¢ = 1,3,4,5 are summarized in Table 2.2 and 2.3
with special conditions By, = 1, and By, = 0. It is assumed that C¢ = C7 = C and gmo = gm3,
so the expressions for mg and ngp are the same as those for m3 and ns. At each iteration the
control voltages can be calculated by using the equations shown in Table 2.2. If the control
voltage V.; exceeds a specified range, the current mirror gain M; should be adjusted to keep
the control voltage within the controllable range.

In the tables, the followings are should be noticed:

. af)k),agk),b((,k), and bgk) : identified transfer function coefficients at (k+41)’th iteration
e dy,dy,bo, and b; : design (ideal) transfer function coefficients

° Vc(,-k) : control voltage of g,,; at k’th iteration

. M,-(k) : current mirror gain of g, at k’th iteration

M,-(O),mt(o),n,(-o), and C : design values

V(_O)

ct ?

pl=k—-1land p2=Fk-2
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Figure 2.31: Tuning procedure flow chart
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Table 2.3: Expressions for mgk) and n,(-k)

2

C[bgpl)/(Ml(pl)1 /agpl))_b(oPQ)/(Msz) agﬂ))]
VPV

o(y/ s /M-yl IMEP)
Vg‘)_vc(sﬂ)

C[(b(]pl)-!ﬂ /agﬁl))/Mspl)_(b(]ﬂ)__*_‘ ,agﬂ))/Mgﬂ)]

2
FRE

C(a(liﬂ)/Mgpl)_a(lp2)/M§P2))
VD

o

M§P2) (P2 b(rl)v(zﬂ) M(pl) (Pl b(P2)V(pl)

Ml(pl) (Pl)b(;ﬂ) M(P2) (p2 b(Pl)

M§P2) (P‘)V(PQ) M(Pl) (I’2 V(Pl)

Mg”l) aoﬂ)_Mgp?) af,”l)

YR G T
MDD 4 /agyz))_ M‘(pz)(,,gm)ﬂ/agm))

Mél’?)agpl)V(P’)_Mgpl)a(l}’z) yirD)
Mgpl)alxﬂ)_MgP?)a(lpl)
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The following is a detailed procedure to control g5 associated with adjusting the coefficient

a3 of each biquad.

1. Set the initial control parameter gn,s and C7(= C) to their design values. From (2.54)

and (2.55), the parameters m§°) and n§°) at the first iteration are given by

0
WO [
S

where K, ;(0),W5(0),Lg°), and Vq(f;) are the nominal values. Also, set the initial current
mirror gain Ms(o) to a proper value so that it may not exceed the specified range in which
the good linearity of the transconductance is kept. Then, from (2.4) and (2.53), the

control voltage 6(50) at the initial implementation becomes,

alc (0)

V(O) =
AT

[+

where C and d; are the nominal values.
2. Obtain the identified coefficient aﬁ“’ from system identification of the physical filter.

3. At the first iteration, it will be assumed that ngl) = ngo) since we have only one equation
for two unknowns. From (2.4) and (2.53),

1
a = 6m5M5(V55 + Tls) (256)

Thus, we may approximate the estimate for my by

) ¢
M5 = 0,0 , . )
M; (V' +ng’)

4. Calculate the control parameters Vs and My from

M = MO
W - _aC o
mPm

and test if Vc(51) exceeds the specified range. If it does, then calculate new Vc(51) and Ms(l).

5. Obtain the identified coefficient agl) from identification of the actual filter with the up-

dated control voltages and mirror gains.
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6. To obtain mgz) and ngz), observe from (refetad4) that

1
off = -a-msMs(O)(K(:)+n5)

1
o = SmsM(VE) +ns)
Solving these two equations simultaneously, obtain the new estimates of ms and ns.
C(af? /Mg - o /M)
Ve - v
o _ MOV 00y
5 Ms(l)ago) _ Ms(o)agl)

) =

7._ Calculate the new control parameters Vs and Mg from

MP = u®

@ _ _&C @
V' = mgg)Ms(z) ng

and check again Vc(sz) , and obtain new Vc(52 ) and M5(2) if necessary.

8. Test whether the system is tuned and repeat the step 5, 6, and 7 until a tuned system is

obtained.

Actually, the similar procedures for g,,,1, gm3, and gms are performed simultaneously. If the
system model is ideal, this algorithm will converge after two iterations. In reality each OTA has
parasitic poles and zeros which make the actual systems have over-ordered transfer functions.
Thus, more iterations are needed to get better results. It can be seen that the computational

requirement of this adjustment algorithm is very simple.

2.5.2 Tuning Simulation Examples

To investigate the performance of the adjustment/tuning algorithm, several sample filters
were tuned by simulation. In the tuning simulation, the following nonidealities were considered:
measurement error (mn%), parameter variation (p%), and over-ordering factor (w,/wy). The
manufacturing process parameter variations were simulated with uniform random values of
+p%. Frequency domain additive measurement errors of £mn% with uniform distribution were
directly fed to the s-domain system ID algorithm. Thus, the frequency response measurement
algorithm was not used in this simulation. For every simulation, 50 noisy data obtained at

equally spaced frequency points were used for the system identification. The iterative complex
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least squares (ICLS) method was performed with the iteration limit set to 10. The iteration limit
for tuning was also set to 10, and the filter is considered to be tuned if all the control voltages

(fine adjustments) are within 9 bit accuracy with respect to the previous control voltages.

2.5.2.1 Over-ordering effects In order to evaluate the effect of the over-ordering
problem on this tuning algorithm, a 6th-order elliptic lowpass filter which has a normalized
cutoff frequency at 1(rad/sec) and 0.5dB passband ripple was tuned. It consists of three second-
order lowpass notch (LPN) filters. Its transfer function is given by
3 2
_ s* 4 By;
T(s)=]1 82 + Ayis + Aoi

i=1
where
i Ai; Agi By Wo @y
110.933855 0.611899 4.36790 | 0.7822 | 0.8376

2 [ 0.156221 0.934830 1.19243 | 0.9669 | 6.1891
3(0.017576 0.990620 1.02486 | 0.9952 | 56.628

Three LPN biquads were tuned separately to tune the 6th-order elliptic filter. The tuning results
with 1% measurement error and 5% parameter variation and various over-ordering factors are
shown in Table 2.4, Fig. 2.32 and Fig. 2.33.

For the third LPN filter, predistortion was performed for every over-ordering case because
the filter has very high design Q of 56, while for the first LPN filter no predistortion was
performed due to its low Q. From the results it can be seen that this tuning algorithm converges
fast and attains good accuracy in the presence of over-ordering (up to w,/w, = 0.1) effects.
However, the over-ordering factor w,/w, = 0.2 leads to a relatively big ripple error at the
transition region. The simulation results show that the tuning algorithm can handle very
high over-ordering factors up to 0.2, so it can be well applicable to high-frequency and high-Q

applications. This kind of over-ordering effects were scarcely handled in the tuning literature.

2.5.2.2 Parameter variations To evaluate the effect of measurement errors and
parameter variations on this tuning algorithm, a simple second-order lowpass filter was chosen

Its transfer function is
1

Trp(s) =
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Tuning results with various parameter variations, 1% measurement error and over-ordering
factor w, fwy, = 0.1 are shown in Table 2.5, and Fig. 2.34. Even when 30% parameter variations
were considered, the tuned filter had a maximum gain (Amqez) Within 0.35% of the desired
maximum gain and a resonant frequency within 0.01% of the desired frequency. It can thus be

seen that this algorithm is not sensitive to the effect of parameter variations.

2.5.2.3 Measurement errors Tuning results with various measurement errors, 5%
parameter variation and over-ordering factor w,/w, = 0.1 are shown in Table 2.6 and Fig. 2.35.
Even in the presence of high measurement errors (up to 5%), this tuning algorithm attained
good accuracy and fast convergence rate. However, 10% measurement error resulted in a poor
tuned state. Actually, in this case, the tuning algorithm had not converged but was stopped by
the iteration limit of ten. This phenomenon is caused by the fact that this model-based tuning
algorithm heavily depends on the results of the system identification and the accuracy of the

system identification is a function of the accuracy of measurements.

2.5.3 Performance evaluation of the digital tuning scheme

The adjustment algorithm presented in Section 2.5.1 was developed for the digitally pro-
grammable continuous-time filter structure [39]. However, the tuning algorithm can be read-
ily extendable to any kinds of digitally controllable filters. Most recently reported high-
frequency continuous-time filters contain OTA-C type integrators because of their inherently
better high-frequency characteristics compared with other types of integrators such as active
RC or MOSFET-C integrators of which the basic building circuits are conventional operational
amplifiers. Most OTA structures [13]-[23],[68, 69] have some sort of mechanism for linear con-
trol of their transconductance gain, and thus, these OTAs can be easily incorporated to build
digitally programmable/tunable biquadratic structures. It has been shown in Section 2.4.5 that
the biquadratic structure under test leads to degraded system ID results in the presence of sig-
nificant parasitic effects because it does not offer the overall gain adjustability and small value
adjustability of the constant term of the transfer function numerator polynomial.

In this section a more robust biquadratic structure is tested to evaluate the performance of
the digital tuning scheme more generally. Small value adjustability of the numerator constant
term and the gain adjustability of the biquad are added to the biquadratic structure under test
such that 5 degrees of freedom models can be used for identification of notch biquads and 4
degrees of freedom models for lowpass or bandpass biquads. Many biquad structures satisfying

these conditions may be possible. One simple example structure is depicted in Fig. 2.36. Its
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Table 2.4: Tuning results of the 6th-order lowpass elliptic filter with w,/w, over-ordering
factors (mn = 1.0%, p = 5.0%)

LPN1 LPN2 LPN3 6th-order Elliptic Filter
No. of No. of No. of Passband 3dB band
Wo [wy iteration iteration iteration ripple (dB) error (%)
0.01 2 2 2* 0.501 0.30
0.05 5 6 4* 0.634 0.34
0.1 6 4 4* 0.556 0.32
0.2 7 ™ 5* 1.357 0.60
* Predistortion was performed

Table 2.5: Tuning results of a simple lowpass filter with p% parameter variations
(mn = 1.0%, wo/wp = 0.1)

Parameter No. of DC Gain Max. Gain Wmaz Wo
Variations (p) Iteration Ao (%) Az (%) (%) (%)
1% 7 0.005 0.27 0.13 0.10

5% 9 0.002 0.79 0.44 0.80

10% 4 0.232 0.32 0.02 0.60
20% 4 0.096 0.10 0.27 0.10
30% 6 0.937 0.35 0.72 0.01

Table 2.6: Tuning results of a simple lowpass filter with mn% measurement errors
(p = 50%, w,/wp = 0.1)

Measurement No. of DC Gain Max. Gain Wmaz Wo
Error (mn) Iteration Ao (%) Apaz (%) (%) (%)
0.1% 7 0.186 0.31 0.30 0.4

1% 9 0.002 0.79 0.44 0.8

5% 7 0.331 1.18 0.30 0.4

10% 10* 0.349 5.29 1.68 0.8

* Tteration limit was exceeded
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Figure 2.32: Tuning results of the 6th-order elliptic lowpass filter (a) Magnitude response
(b) Phase response (Over-ordering factor w,/wp = 0.1, Measurement errors
mn = 1%, and Parameter variations p = 5%)
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Figure 2.33: Tuning results of the 6th-order elliptic lowpass filter (a) Magnitude response
(b) Phase response (Over-ordering factor w,/w, = 0.2, Measurement errors
mn = 1%, and Parameter variations p = 5%)
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Tuning results of the simple second-order lowpass filter (a) Parameter varia-
tions p = 1% (b) Parameter variations p = 30% (Over-ordering factor w,/wp
= 0.1 and Measurement errors mn = 1%)
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Figure 2.36: One example of the biquads which have the overall gain adjustability

ideal transfer function is given by

gmeBhs + dpis 4 dptim2

2
o ST T T it

T(s) =

Small value adjustability can be easily achieved by modifying the OTA structure. For example,
the OTA structures presented in [68],[69] have even negative g, adjustability by using cross-
coupled input stage or by connecting two simple OTAs in parallel. Using this structure, a
6th-order elliptic filter is extensively simulated based upon the Monte-Carlo method. In this
simulation the LS(ARMA) algorithm presented in Section 2.4.4 is also used to measure the
frequency responses of the filter as shown in Fig. 2.37. Yield of tuned filters is also investigated

to fully characterize the tuning scheme.

2.5.3.1 Test circuit (6th-order elliptic lowpass filter) To test the whole tuning
scheme shown in Fig. 2.37, a 6th-order elliptic lowpass filter has been chosen which has a
normalized cutoff frequency of 1.0 (rad/sec), a passband ripple of 1.0 (dB), a stopband starting
frequency of 1.5 (rad/sec), and a minimum stopband attenuation of 64.66 (dB). Its magnitude
response is shown in Fig. 2.38.

The 6th-order elliptic function

st +bis+ b
Ks
sSC+...+a35+a

T(s) =
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Figure 2.37: Block diagram illustrating the whole tuning scheme
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must be decomposed into three 2nd-order biquadratic functions

3 2
_ Bhis* + b1is + boi
T(s)= ,I=Il Ki=g + a8+ agi

According to the network decomposition theory [70], there are many different ways to do the

decomposition depending upon the following degrees of freedom:
e Pole-zero pairing
e Gain distribution
e Cascading sequence,
and two possible criteria are
e Maximum dynamic range and minimum inband loss
e Minimum overall transmission sensitivity

It is not possible to perform the decomposition such that both criteria are simultaneously
satisfied. The first condition is thus selected since it is considered more important from a
tuning point of view. To satisfy the first condition, voltage swing at each biquad input is as
high as possible while the in-band losses are as low as possible.

There are 6 possible combinations in pole-zero paring of the 6th-order function. Poles and
zeros should be paired such that the magnitude response of each biquad is as flat as possible
in the frequency range of interest. According to Lueder’s method, poles and zeros should be
paired such that

ma:c{d,-},~=1,2'3

ds = tog (Bme2)

Timin

is minimized where

where Tjpq, is maximum gain of biquad ¢ for w € [0, 00], and Ty is minimum gain of biquad
i for w € [0, 1]. The pole-zero paring satisfying the above condition can be found using d-table
and d-graph as in [70]. In general the rule of thumb is to combine the high-Q poles with the
zeros lying closest to them. The pole-zero locations of the 6th-order elliptic filter are depicted
in Fig. 2.39. After applying the Leuder’s method, we obtained the following pole-zero pairing:
D1 — 200y P2 — 22, and p3 — z; which obeys the rule of thumb.

Gain distribution and biquad sequence determination are also done from the viewpoints of

minimizing individual biquad overdrive and maximizing the signal to noise ratio. The methods
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Figure 2.39: Pole-zero locations of the 6th-order elliptic lowpass filter

for these can be also found in [70]. After these procedure, the finally obtained biquad transfer

function coefficients are
i K; Bpi by boi bi; boi Woi Qi
1]0.14218 1 0 4.230449 0.348604 0.611825| 0.7822 | 2.2438

21017511 1 0 2.381154 0.100900 0.994942 | 0.9975 | 9.8857

3045618 0 0O 1.0 0.710041 0.187943 | 0.4335 | 0.6106

where it can be seen that the filter consists of two lowpass notch biquads and one lowpass biquad.
Their magnitude responses are shown in Fig. 2.40. This kind of dynamic range optimized filter
function can not be implemented with the digitally programmable continuous-time filter under

test due to unadjustability of the biquad gains I;’s.

2.5.3.2 Simulation results and tuning yield investigation The 6th-order
elliptic lowpass filters have been tuned using the procedure shown in Fig. 2.37. The mean
and standard deviation of gain error computed from 100 sample filters before tuning and after
tuning are depicted in Fig. 2.41 (a), (b), (c¢) and (d), respectively, for three different over-

ordering factors.
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Figure 2.40: Dynamic range optimized 6th-order elliptic lowpass filter. Magnitude re-
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Figure 2.41: Effects of the over-ordering factor (w,/wp) on the tuning accuracy. (a) Mean
and (b) Standard deviation of untuned gain error computed from 100 inde-
pendent untuned and tuned filters (SNR=40dB, THD=-40dB, p = 20%)
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In this simulation, somewhat pessimistic conditions were chosen to simulate worse cases

than realistic. The following nonideality factors were used.
e Component variation p=20%
e Signal-to-noise ratio SNR=40dB
o Total harmonic distortion THD=-40dB

The process variations on the capacitances and the OTA transconductance gains were simulated
with 20% multiplicative uniform random numbers. The SNR is the ratio of the input excitation
signal to additive uniform random noise as defined in Section 2.4.4.4. The input and output
signal samples were added to uniformly distributed random numbers. The nonlinearity of
input excitation signals and the filter nonlinearity were approximated with the second harmonic
distortion. The total harmonic distortion of the input and out signals was set to —40dB. The
iteration limit for tuning was set to 20, and the filter is-considered to be tuned if all the control
voltages are within 10 bit accuracy.

The results indicate that the digital tuning scheme can reduce the standard deviation of
gain error by a factor of 100. It should be noted that the standard deviation increases with the
over-ordering factor. This is primarily due to the degraded system ID accuracy in the presence
of significant parasitics as discussed in earlier sections. The scheme, however, still shows good
accuracy with an over-ordering factor (w,/w,) as high as 0.04. The plots shown in Fig. 2.41
were computed from individual frequency points, and thus, the mean of gain error plot is just
the ensemble average of the gain responses of 100 sample filters. With these plots, it is not
possible to fully investigate the statistical characteristics of the tuned filters.

To evaluate the performance of the tuning scheme more accurately and to investigate the
tuning yield, the window specifications shown in Fig. 2.42 are considered. Fig. 2.42 (a) exhibits
the window specification of the ideal 6th-order elliptic lowpass filter. If an error bound is given
as shown in Fig. 2.42 (b) such that a sample filter which has a gain response within the error
bound is regarded as a tuned or satisfiable filter, then histograms of the tuned filters can be
obtained. The error bound e in the passband is defined as a percentage with respect to the
passband ripple (1.0dB) as shown in Fig. 2.42. Thus, the filters of which the gain responses in
the passband are between /100 (dB) and —(1 + ¢/100) (dB) are considered to have an error
bound e in the passband. The error bound is defined differently in the stopband as a percentage
with respect to the stopband attenuation (64.66dB) divided by 10. Thus, the filters which have
stopband gains less than —64.66 + 6.466¢/100 (dB) have an error bound e in the stopband.
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Figure 2.42: (a) Ideal window specification of the 6th-order elliptic lowpass filter (b) Def-
inition of the window error bound




94

The obtained histograms of the tuned filters are shown in Fig. 2.43, 2.44, and 2.45 for
three different over-ordering factors. Each figure contains three histogram plots. The first and
second plots were obtained by checking the passband error bound only and the stopband only,
respectively. The last one is the histogram taking into account the entire frequency range.
From these plots we can more clearly analyze the statistical characteristics of the filters tuned
by the digital tuning scheme. If the allowable error bound e is set to 10, i.e., if the allowable
passband ripple deviation from the ideal ripple (1.0dB) is 0.1dB and the allowable stopband
deviation from the ideal stopband attenuation (64.66dB) is 0.6466dB, then the tuning yields
are 100%, 99%, and 92% for w,/w, = 0.001, 0.01, and 0.04, respectively. This indicates that
if a tighter one than the desired window specification is used for initial filter implementation
and tuning, then most tuned filters are expected to satisfy the desired window specification. It
can be also seen from the plots that the error bound density looks similar to a Rayleigh or a

Gamma distribution.

2.5.4 Tuning Experimental Results

The digital tuning scheme has been applied to tune several sample filters. The linear
transfer functions were implemented with the digitally programmable monolithic continuous-
time filter discussed in Section 2.3 which has only 6 bit resolution for the fine control. The
block diagram of the experimental setup is shown in Fig. 2.46.

A workstation HP 9000/300 was used as the tuning host, and all instruments were con-
nected on the HP-IB and were controlled by the tuning host. Measurements were made by the
HP 54111D digitizing oscilloscope, which has programmable built-in commands for automatic
measurements and has 6 bit single-shot accuracy and 8 bit accuracy with averaging. Excitation
signals were generated from a HP 3325A programmable function generator.

First, a simple 2nd-order lowpass filter which has a resonant frequency of 500 kHz was
implemented and tuned. Its normalized transfer function is given in (2.57). Gain and phase
responses were measured at 50 equally spaced frequency points from dc to 600 kHz for each
iteration and used for system identification. Fig. 2.47 shows that the tuned filter has a fre-
quency response close to the desired one while the initially implemented filter has an erroneous
frequency response. The entire tuning process took 9 iterations.

Another tuning experimental result is shown in Fig. 2.48. The filter was tuned to a 2nd-
order bandpass filter which has a resonant frequency of 100 KHz, a @ of 10 and a maximum
gain of 1. After 7 iterations, the tuned filter had a resonant frequency of 99.7 KHz, a Q of 9.97

and a maximum gain of 0.995. These data were calculated from the identified transfer function
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Figure 2.46: Block diagram of the tuning experimental setup

of the tuned filter.

2.6 Conclusions

In this chapter a digital tuning scheme for digitally programmable continuous-time fil-
ters has been described. To simplify the tuning problem, the tuning procedure is partitioned
into two phases: system identification and adjustment. Various methods for continuous-time
filter identification have been discussed. Two indirect methods, time-domain approaches and
frequency-domain approaches have been investigated where the system ID problem is simplified
by decomposing it into two steps.

In the time-domain approaches, the continuous-time filters are identified by first esti-
mating discrete-time models using z-domain system ID algorithms and then obtaining equiv-
alent continuous-time models using z-to-s transformation methods. It has been demonstrated
through extensive simulations that among various LS z-domain methods, the generalized LS al-
gorithm based on an AR noise model shows better performance for various noise characteristics
than any others.

Very accurate domain transformation (s-to-z and z-to-s) methods based on the iterative

complex LS algorithm have been presented and compared with the well known bilinear trans-
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formation method. It has been shown that both complex LS transformation methods provide
improvement in accuracy by a factor of 10 to 100 compared with the bilinear method. The com-
plex LS s-to-z method can thus be well applied with improved accuracy to the digital filter and
control system design applications. Although the time-domain approach, i.e., the GLS(AR)
algorithm along with the complex z-to-s transformation method, can be well applied to the
continuous-time filter 1D, it requires high-performance and high-cost data acquisition circuits
for high-frequency applications due to the requirement of large number of consecutive samples,
which makes the frequency-domain approaches preferable in the digital tuning.

In the frequency-domain approaches, the frequency responses of the filter to be identified
are first measured from frequency response measurement algorithms and the measured data are
then fed to s-domain system ID algorithms. Frequency response measurement methods based
upon the FFT algorithm and the LS algorithms have been comparatively investigated. It has
been shown that the LS algorithms based on low-order models such as a 1st-order AR model
and a 1lst-order ARMA model have similar performance to the FFT method while they can
be utilized with lower-cost data acquisition circuits. Several s-domain system ID algorithms
have been presented. It has been demonstrated that the iterative complex LS (ICLS) algorithm
can reduce the bias existing in the ordinary complex LS algorithm. The combination of the
ICLS s-domain system ID algorithm and the LS(ARMA) frequency response measurement
algorithm can thus become a good frequency-domain approach for continuous-time system ID.
Since actual filters are usually over-ordered due to parasitic effects, system ID should be robust
in the presence of parasitics. It has been shown that the requirement can be decently satisfied
by the frequency-domain approach.

An adjustment algorithm tailored to the digitally programmable continuous-time filter
structure under test has been proposed. Its basic idea is to calculate filter control parameters
by estimating process dependent parameters using the system ID results. It is very simple and
converges quickly. Extensive simulations demonstrated that the adjustment algorithm along
with the system ID method can attain very good accuracy and high convergence rates for low-
frequency applications. It has also shown that the digital tuning scheme can be fairly well
applicable to high-frequency and high-@Q applications. Experimental results have demonstrated
that the tuning scheme can be successfully applied to filter tuning with good accuracy.

Since the adjustment algorithm completely relies on the system ID results, the tuning
performance is highly affected by the system ID accuracy. Although the proposed system ID
method is robust to some extent in the presence of high parasitic effects, its performance will

be limited when the parasitic effects are getting more significant. This is primarily due to
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that the s-domain system ID algorithm is a model-based one and the performance degradation
stemming from model errors are inevitable. The extent of performance degradation due to
model error is also strongly related to the biquad structure and the OTA transconductance
gain adjustability. If a biquad has lack of adjustability as in the biquad structure discussed
in Section 2.3, a reduced degrees-of-freedom model should be used for system ID which leads
to increased model error. These kinds of model errors can be considerably reduced by using
higher-order models for system ID. This will, however, lead to much complicated procedures
for filter adjustment.

The performance of the digital tuning scheme is degraded when the over-ordering effects
of the actual filter are very significant. However, simulation results have demonstrated that
the tuning scheme can get considerably good accuracy in the presence of high over-ordering
effects. Tuning simulation results of a 6th-order lowpass filter have shown that the tuning yields
for 0.1dB (about 1% error) passband error bound are 100% and 95% for over-ordering factors
0.001 and 0.04, respectively. These results were obtained with 10 bit resolution of the control
voltages (10 bit D/A converters) in somewhat pessimistic environment such as 20% process
component variation, 40dB SNR which requires a medium resolution data acquisition system
(an 8 bit A/D converter), and —40dB harmonic distorted input signals which can be generated
from an inexpensive sinusoidal signal generator circuit. Thus, the tuning scheme can be used
to practically build high-performance monolithic continuous-time filters.

The parasitic effects can also be reduced by circuit techniques using excess phase com-
pensation schemes and using very simple OTA structures where the parasitic poles and zeros
lies at very high frequencies leading to reduced over-ordering effects. The performance of the
digital tuning is limited by the accuracy of the excitation and data acquisition circuits and the
resolution of the control circuit. This, however, implies paradoxically that the digital tuning
has potential of very high precision at the expense of high cost.

When the digital tuning scheme is applied to high-frequency and high-@ applications,
the predistortion technique discussed in Section 2.3 must be used at initial implementation
to avoid oscillation. Since the technique using predistortion based on the estimation of the
effective parasitic pole does not always result in stable initial implementation and the current
digital tuning scheme does not guarantee the stability, one possible future work would be the

development of methods such that the stability is guaranteed.
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CHAPTER 3. NONIDEALITY CONSIDERATION FOR HIGH
PRECISION AMPLIFIERS — ANALYSIS OF RANDOM
COMMON-MODE REJECTION RATIO!

3.1 Introduction

Numerous nonideal effects impact and generally degrade the performance of practical op-

amps. Three factors, finite gain, finite common-mode rejection ratio (CMRR), and nonzero

' offset, are the major sources which limit the high-precision low-frequency applications of am-

plifiers. It is well known that precision applications require a high open-loop gain, a large
common-mode rejection ratio and a low offset voltage but practical limitations force the de-
signer to make tradeoff between these parameters. Because of the nonlinear relationship between
these parameters and the performance parameters of interest, and because of the inherent sta-
tistical nature of the offset voltage and CMRR, the relationship between these parameters and
the performance of amplifiers is still not fully formulated, causing designers to still commit
non-optimal designs to the foundry. For example, an infinite CMRR is often not optimal in
the presence of a known finite open-loop gain of the op-amp. This research focuses on a rigor-
ous formulation of the relationship between these parameters and the performance of precision
finite-gain amplifiers. Simple mathematically tractable relationships between the finite gain,
CMRR and offset voltage are developed and related to the overall performance of high precision
finite gain amplifiers.

The CMRR and offset are not totally deterministic but have both deterministic and random
components. Unfortunately, the performance and yield of systems using integrated op-amps are
often dominated by the random components. These random components which are primarily
due to the device mismatch make it difficult to analyze the op-amp errors. The statistical

characteristics of these parameters must be well understood to practically obtain high precision

1 (©1993 IEEE. Reprinted, with permission, from IEEE Transactions on Circuits and Sys-
tems Part I, vol. 40, no. 1, pp. 1-12, Jan. 1993.
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performance. Several analyses of the random offset [71],{72] and the random CMRR [74)-[76]
in differential amplifiers have been made, but these analyses do not focus on the mixed effects
of these nonidealities on amplifier performance. The analyses of the random CMRR [74]-[76],
made several decades ago, concentrated only on bipolar differential amplifiers. Moreover, they
focused on the methods to increase the CMRR, not on the statistical characteristics of this
parameter which play a key role in the performance of precision finite gain amplifiers.

The impact of the CMRR may be best appreciated by reviewing the term itself. The
term is widely used and has appeared in elementary electronics and instrumentation texts for
many years [11],[71]-[73]. For a single sample amplifier with differential input and single-ended

output, the term is defined as

Ad'm

where Ay, and A, are the small signal differential-mode and common-mode gains respectively.

CMRR =

Often it is expressed logarithmically rather than linearly. For the single sample amplifier, the
CMRR is deterministic and can be readily measured in the laboratory. Of more importance
than the CMRR of a single sample amplifier from an operational amplifier yield viewpoint, from
a discrete systems designers viewpoint, and from an integrated systems designers viewpoint, is
the CMRR of an amplifier architecture in a process. In this case, the common-mode gain which
is ideally zero, becomes a key parameter in determining the CMRR. Since the common-mode
gaiﬁ invariably has a random component and a deterministic component, the same comment
can be made about the CMRR.

Unfortunately, a rigorous definition of the CMRR has not appeared in the literature.
Consequently, designers have been basing designs on inaccurate models and/or expensive “worst
case” simulations where it is often difficult to ascertain that the simulations are actually worst
case. The impact has often resulted in designs that are overly conservative or designs that have
substantially degraded performance. The rigorous definition of the CMRR, though seemingly
straightforward, is complicated by the observation that the CMRR is actually a random variable
that is ideally infinite and that has a probability density function. The probability density
function of the CMRR is nonlinearly related to the probability density functions of several other
random variables which characterize the transistors comprising the operational amplifiers.

In this chapter, the CMRR and offset of CMOS op-amps are thoroughly investigated.
Op-amp induced errors in precision finite gain amplifiers due to these nonideal effects are
compositely analyzed. A model amplifier for these analyses is the two-stage CMOS op-amp
shown in Fig. 3.1. The sample op-amp has been designed for high-speed and high-precision

applications in a 24 CMOS process. The device sizes and other performance parameters are
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Table 3.1: Transistor size of the op-amp in Fig. 3.1
[ Transistor | W/L (um/pm) [[ Transistor | W/L (um/pm) |

M1 204/2 M2 204/2
M3 75/3 M4 75/3
M5 336/3 M6 100/2
M7 250/2 M8 14/4
Vs 33V Cc 2.39 pF

Table 3.2: Performance of the op-amp in Fig. 3.1

| Specification || Performance |

Settling Time (1V Step, 0.1%) 18.3 nS
(2V Step, 5mV) 16.5 nS

Systematic Input Offset Voltage 0.26 mV

Open Loop Voltage Gain || 819.4 (58.27 dB)
Unit Gain Frequency (GB) 59 MHz
Phase Margin 75°
Output Voltage Swing || +4.1V, —4.3V
Power Dissipation 16.5 mW
CMRR 62.5 dB

shown in Table 3.1 and 3.2. Although the formulations focus on the two-stage amplifier of

Fig. 3.1, the results are readily extendable to other op-amp architectures as well.

3.2 Derivation of the Random and Deterministic CMRR

Since in multistage amplifiers the CMRR of the first stage is usually an important factor
in the overall CMRR, the CMRR of the two-stage CMOS op-amp will be dominated by the
first stage. The small signal equivalent circuit of the differential stage in Fig. 3.1 is shown in
Fig. 3.2, where g, denotes the internal output conductance of the transistor used as a bias
current source. Ideally M1 and M2 are matched as are M3 and M4.

The small-signal output voltage is given by

Vo = Admvd + Aeme (32)
where

V4 =  Uinl — Uin2 (3'3)
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Ve = 2:'_111';&' (34)

The nodal equations at nodes (1), (2), and (3) are

(gm1 + ga1)v1 — (gm3 + Ga1)va = Gm1%im
(gm2 + 9a2)v1 — Gmav2 — (gaz + gda)Vout = Gm2Vin2 (3.5)
(gm1 + gm2 + 9d1 + gd2 + 9o)v1 — gd1V2 — Gd2Vout = Gm1Vin1l + Gm2Vin2.

The model parameters are all random variables and can be expressed as

gm1 = gmiN + gmiR1 + ImiR2

9m2 = Ym2N + gm2R1 + Im2R2

9m3 = 9gm3N + 9m3R1 + Im3Rr2

gma = YmaN + 9mdaR1 + 9m4R2 (3.6)
gar = gan + gdir1 + garRe

9d2 = 9doN + 9d2R1 T 9d2R2

9d4 = 9daN + 9d4R1 + 9daR2,

where the N subscript denotes the nominal value which is deterministic, the R1 subscript denotes
a random component that is process dependent but which does not vary from device to device
on a wafer and where the R2 subscript denotes a random component that varies randomly from
device to device on a wafer. It will be assumed that process dependent random variables (those
with an R1 subscript) are totally correlated and identical for matched devices and that the
wafer-level random variables (those with an R2 subscript) are identically distributed for ideally
matched devices but statistically uncorrelated.

Assuming that gnx >> gai, for all k,! € {1,2,3,4} and that M1 and M2 are nominally
matched as are M3 and M4, we can obtain the expressions for the differential-mode gain Agm

and the common-mode gain A, which are themselves random variables,

 202.:9mi + 92,:(2¢miR1 + gm3R2 + GmaR2) + 20migmi(2gmir1 + gm1R2 + gma2R2) (3.7)

Ay
" 29migmi(9di + 9ar)

N
29migmi(gai + gar)
"‘2gmigml(gle2 - gd2R2) - gogmi(gm3R2 - gm4R2)] ) (3-8)

Aem [~ gdigmigo + (294igmi + Gogmi)(gm1R2 — Ym2R2)
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where

gmi = YmIN = Im2N

gmiRl = ¢gmlR1 = gm2R1
9ml = Gm3N = gmdN

gmiR1 = gm3R1 = gmdR1 (3.9)
gdi = @GdiN = Gd2N

9dir1 = gdiR1 = 9d2R1
gdi = §daN,

where the 7 subscript denotes the input transistors M1 and M2, and the ! subscript denotes the
load transistors M3 and M4.

Since the random component of the differential gain is very small compared to the deter-
ministic component of the differential gain as can be seen in (3.7), the total differential-mode
gain can be approximated by the deterministic gain only. Hence,

295, igmi
29migmi(9di + gar)

Imi (3.10)
gdi + gat

Adm

The random component of the common-mode gain is, however, comparable in magnitude to the
deterministic component of the common-mode gain. The deterministic and random common-

mode gains, A2, and AR, can be defined so that
Aen = AR+ AR (3.11)

From (3.8), natural definitions of A2, and AR, are

_ 9digmiJo
29migml(gdi + gdl)

9digo
N 7 3.12
29mi(9di + 9a1) (312)

Al

(29digmi + Gogmi)(9miR2 — gmeRz) — 29migmi(9d1R2 — 9d2R2) — Yo9mi(9m3R2 — GmaR2)
em 29migmi(9di + 9d1)

_ 1 [ (!]mlnz — gm2R2 _ gm3R2 ~ gm4R2>
2(gai + ga1) I° mi Imi
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gm1R2 — m2R2 _ Gd1R2 = gd2R2)] _ (3.13)

+294
9di Imi gdi

The ratios of the numerator of (3.13) are readily obtained in terms of the geometric and process
device parameters. Details of this calculation appear in Section 3.8. Substituting (3.84), (3.85)
and (3.88) into (3.13) gives

AR = 1 [ p (WIRZ —~Warz . Lars — Lir2 + Wags — War2 + Lsr2 — L3g2
o 2(gdi + ga) I°° Wi L; Wi L
Vrarz — Vrir2 . Vrape — VTSRZ) VriR2 — VT2R2]
+ 294 ———————— 3.14
Vasi — Vri Vasi — Vo 9d Vasi — Vri (3.14)

The CMRR, defined in (3.1) where Ay, is now a random variable, is itself a random

variable. If we define

1 AD
5 = - 1
CMRR, Ag (3.15)
1 AR
CMRR; = —<, 3.16
R Ad’m ( )
then we have
Adm
CMRR =
Acm
_ Adm
~ AR + AR,
1
= . 3.17
CMRRp' + CMRRE! (3.17)

From (3.10), (3.12), and (3.14)-(3.16), the deterministic and random CMRRs are given by

CMRR;! = ~-2dido_ 3.18
b 2gmigml ( )
and
- 1 Wire — Ware | Lar2 — Lips , Wape — Ware | Laps — Lar2
IRRR =
CMRRR = 54 oo (Pt 4 TRy ST Jal
Vrar2 — Vrire | Vrape — VT3R2) Vrir2 — VTZRZ]
+ 2¢4;i ———————=1.(3.19
Vasi — Vri Vaesi — V1 9di Vasi — Vri (3.19)

The deterministic CMRR given by (3.18) is as reported in [72] and {73]. From (3.19) we can

see that the random component of the CMRR is caused by the nonzero output conductances of
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the bias current source and the input transistors as well as the mismatch of the paired devices.
It can be seen that the effect due to g, on the random CMRR are more dominant than that
due to gy;.

We are accustomed to characterizing the CMRR by a single number. Unfortunately, it can
be seen from (3.17)-(3.19) that the CMRR is actually a random variable and, as such, charac-
terized by a probability density function, not a single number. Nonetheless, it is instructive to
develop an appreciation for what the CMRR of sample amplifiers will be and to determine how
important the random part of the CMRR actually is. At this stage, we will calculate a pseudo
worst case CMRR to compare the magnitude of the random and deterministic components of
the CMRR. The probability density function itself will be explored in the next section.

To calculate the pseudo worst case CMRR of the op-amp in Fig. 3.1 whose simulated
parameter values are shown in Table 3.3, it is assumed that the wafer-level random component

of L and W are normally distributed with zero mean and standard deviation
o1 = ow = 0.014pm. (3.20)

We chose oo, = oaw = 0.02um which is very reasonable choice as indicated in [79). From the
choice equation (20) was obtained. Since AL = Ly~ Ly = Ligz— Lapz and opf, = /0%, + 0,,
o[ = 0[] = 03 = crA[,/\/i = 0.014pm. It is also assumed that the corresponding random

component of Vp is normally distributed with zero mean and standard deviation
ovp = —== (3.21)

where k=0.0236 Vum. The k value was obtained based on the choice of gpv, = %mV for
LW=20 x 20um? according to the experimental data in [80).

We define the pseudo worst case CMRR to be the sample CMRR that would result if all
random variables comprising the CMRR are in the direction that they add and at the 3o value
that would most degrade the sample CMRR. The corresponding o values for width, length and
threshold voltage variations are summarized in Table 3.4. The deterministic CMRR calculated
from (8.18) was 63.7dB which is close to the simulated one shown in Table 3.2. The pseudo
worst case random CMRR calculated from (3.19) was 51.6dB which dominates the deterministic
CMRR. The worst case total CMRR was thus 49.6dB. Since the random CMRR can have both
positive and negative polarity, the total CMRR can be either improved or degraded by the
random CMRR.
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Table 3.3: Simulated parameter values of the op-amp in Fig. 3.1

Imi 1030p4/V gml T12uA/V
do 43.7uA)V gdi 22.0uA/V
Vasi — Vg 0.393V Vest — Vi 0.542V

Table 3.4: Component o values for the op-amp in Fig. 3.1

0.014pm
1.5TmV

oL, 0.014pm
OVip; 1.17mV

ow
OV

3.3 Statistical Characteristics of CMRR

In this section the statistical characteristics of the random variable, CMRR as defined by

(3.17), will be investigated. For notational convenience we will define

¢ = CMRR (3.22)
x = CMRRE (3.23)

= CMRRp (3.24)
y = x+d (3.25)

where the bold letters are used to denote random variables. From (3.17), the common-mode

rejection ratio can be expressed as

=l =5l = m (3.26)
Equation (3.19) shows that the random variable x = CM RR,}I is a function of 12 random

variables. These random variables are assumed to be independent and normally distributed

with zero mean.

N(0,0%)
N(0,0%)
N(0,0%,.)
N(0,0%,,).

Wirz, Wone, Wap2, Wanz ~
Lyr2, L2R2, Lar2, Larz ~ (3.27)
Vrire, Vrar2 ~

Vrsre, Vrarz ~

Since x is the sum of 12 uncorrelated zero mean random variables, its mean will also be zero

and its variance is equal to the sum of their variances. Thus, x is distributed as

x ~ N(0,02) (3.28)
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1 1 1 1 1 ot (92 + 49%) o, g2
2 _ 2 2~ il 2.2 Vri\Jo di VriJo
(3.29)

Since d in (3.24) is deterministic, the random variable y = x 4 d is normally distributed with

mean d and variance o2,

y ~ N(d,02). (3.30)
The mean of |y| can be expressed as [77].
E{ly|}= ox\/z e?/%% L od P (i) —d (3.31)
T Oz
where
P(z) = —— / T ey, (3.32)
V27r —00

The variance of |y| is then

E{|y*} - E¥{ly|}

= E{y*}-E*{|yl}

Var{y}+ E*{y} - E*{lyl}

= o2 +d*-E¥|y|}. (3.33)

2
Ty

The probability density function, f.(c), of the common mode rejection ratio ¢ can be
obtained as follows. We want to determine the density of ¢ in terms of the density of y. Since
¢ >0, fo(¢) =0Vc < 0. The equation ¢ = |%| has two solutions for ¢ > 0,

1 1
= ——. 34
¢’ Y2 P (3 3 )

Il

nh =

From the fundamental theorem of determining the density of a function of a random variable
[77], the pdf of ¢ is then

fo(n) + fu(y2)
lg'(y)l * lg'(92)]

A a ()

where f,(y) is the probability density function of y, and g(y) = |%| Since from (3.30) the pdf

fe(e)

of yis

1 —-d)?
1) = e [—“’203) ] , (3.36)
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Figure 3.3: Probability density curves of CMRR. ¢ = CMRR and r = |d/o|

the pdf of the common-mode rejection ratio ¢ becomes

— de)2 2
fe(e) = 7_2—_7:7—6-5 [emp{—%} + ezp{—(—l%(—i%)——” , ¢>0 (3.37)

The probability density curves of ¢ are shown in Fig. 3.3 where r = |d/o;| and the
CM RRB1 of the op-amp in Fig. 3.1 was used for d. These curves show that the pdf of ¢
is similar to a Gaussian density function, but it is not symmetric, and the left side of the peak
point goes to zero faster than the right side, so the mean lies at the right of the peak point.
Fig. 3.3 also shows that for the op-amp of Fig. 3.1, the CMRR probability below 55dB is almost

zero. Since the pdf of ¢ is known, the mean and variance can be found from the expressions,

E{c} = /Ooocfc(c)dc (3.38)
ol E{c?} - E*c}. (3.39)

c

I

If |y| is concentrated near its mean, then E{c} and o2 can be approximated from the
procedure of estimating the mean and variance of the functions of a random variable [77]. Let
c= f(lyl) = ]%I and m = E{|y|}. If f(]y|) is approximated by the first three terms of the

Taylor series of f(|y|) with center m, then

£l = £(m) + £ )1yl ~ m) + L1y - my2 (3.40)
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Taking the expected values on (3.40), we obtain

E(f(y)}= fm) + T (By1ypy - m?). (3.41)

The approximated E{c } is thus

E{c} o~ —ro [1+ il >2] (3.42)
E{| '} E{lyl}

The first-order estimate of o2 is given by

2
o

£ (m)Pafy

(ﬁ?ﬁ) : (3.43)

The mean and variance of |y| are given in (3.31) and (3.33). From (3.37)-(3.39), (3.42), and

(3.43) it is clear that the statistical characteristics of the common-mode rejection ratio, i.e., its

1

mean, variance, and pdf, can be readily obtained if the variance of the process parameters are
known.

The statistical parameters of the CMRR of the sample op-amp in Fig. 3.1 were calculated
using the derived equations and the data in Table 3.3 and 3.4. The approximated equations
(3.42) and (3.43) were used to calculate E{c} and o.. The calculated results are listed in
Column A of Table 3.5. In order to investigate the correctness of these derived equations,

200 Gaussian random numbers with zero mean and variance o2

were generated and used to
calculate the corresponding parameters. From these sample data of the random variable x, the
sample data of |y| and c can be obtained using (3.25) and (3.26). Their calculated mean and
variance are shown in Column B of Table 3.5. The E{[y|} and o), from the derived equations
are very close to those from the generated sample data, but the E{c} and o, of Column A
somewhat differ from those of Column B because the E{c} and o, were calculated from the
approximated equations (3.42) and (3.43). The histogram of the generated random data of x
and the CMRR histogram are shown in Fig. 3.4 and Fig. 3.5. Since the r(= |d/o;|) of the
sample op-amp in Fig. 3.1 is 2.2, Fig. 3.5 corresponds to the curve (r = 2.2) of Fig. 3.3. These

two plots are very similar and support the model of equation (37) for the pdf of c.

3.4 Definition of the CMRR. for Processes

The random offset of a CMOS amplifier has been defined for processes as three times its

standard deviation. The reason is that the offset voltage has a Gaussian distribution, so 99.7%
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Table 3.5: The CMRR statistical characteristics of the op-amp in Fig. 3.1 calculated (A)
from the derived equations (B) from the 200 generated random numbers

| | A | B |
d —6.55 x 10~4
Oz 2.976 x 10~4 2,763 x 10~
E{|y|} 6.579 x 10~4 6.612 x 10™4
ol 2.797 x 104 2.691 x 10~4
E{c} 1.795 x 103 (65 dB) 2.017 x 103 (66 dB)
0. 6.462 x 102 1.847 x 10°

of a sample satisfies the specification. Attention, however, has not been paid to the random
CMRR of CMOS amplifiers, and no definition of the CMRR including random components has
been made. Thus, the CMRR of CMOQOS op-amps for processes will be defined in this section.
In the previous section we found the probability density function f.(c) of the CMRR. We
will define the CMRR to the value of & such that 99.86% of a sample set has a CMRR greater
than é&. The choice of the 99.86% which is close to the 99.7% used in the definition of offset
voltages discussed above will be discussed later. Integration of the pdf, f.(¢), from é to infinity

gives the following results:

[ #e)de = P(a) + PO~ 1 (3.44)
where
_1/é-d
@ = (3.45)
b = 1—/-2—&- (3.46)

Since d is negative for the sample op-amp, we can rewrite e and b as

1 d

b= — — | =

3.47
o X Oz ( )

Oz
From equation (3.47) we can see that a is always greater than b by 2|d/o;|. Thus, P(a) is also
always greater than P(b) because P(z) defined in (3.32) increases from 0.5 to 1.0 as z increases

from 0 to oo.

Since we want to make
/ f.(c)de = 0.9986, (3.48)

P(b) should be very close to 1.0. This means that P(a) is almost 1.0 because P(a) is greater

than P(b), and the maximum value of the function P(z) is 1.0. In most cases, |d/o| > 0.5, so
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a > b+ 1. Therefore, under the condition of (3.48), the approximation

f fe)de ~ P(b)
c
=P (M) (3.49)
Oz
can be used. From the equation (3.48) and (3.49) we obtain
é+d
P (l/c—+) = 0.9986. (3.50)
Oz
It now follows from tables for P(z) [78] that (3.50) will be satisfied provided
jet+d _, (3.51)
Oz
which can be expressed as
é= (30, —d)L. (3.52)

The reason why we chose a figure of 0.9986 in (3.48) was to obtain the integer 3 in (3.51). If
we use (30, — d)~! as the CMRR specification in designing CMOS amplifiers, then 99.86% of
a large sample will satisfy the specification. If d is positive, then P(b) is greater than P(a) and

finally we have
é= (30, +d)\. (3.53)

Therefore, we can define the CMRR for processes as
CMRR = (30, + |d|)! (3.54)

where d and o, are CMRR]! and the standard deviation of CM RRR'. The CMRRE' and
CMRRE! were defined in (3.15) and (3.16). The calculated CMRR for the sample op-amp in
Fig. 3.1 was 56.2d B. Comparing with the density curve (r=2.2) in Fig. 3.3, we can see that the
value 56.2dB is very reasonable.

The CMRR definition for processes of (3.54) and the CMRR pdf of (3.37) are general
for the op-amps whose deterministic and random components comparably contribute to the
total CMRR. This case usually corresponds to the op-amps whose first stage has a single-ended
output. If op-amps have a first stage with differential output, then their deterministic common-
mode gains are significantly reduced by the next stages [75]. In these cases the deterministic
CMRR can be ignored, i.e., d ~ 0 and the above CMRR definition and the pdf should be
changed. If d is nearly zero, then the pdf of the total CMRR is

2 1
fc(C) = memp [—2—0.3?5] s c>0. (355)
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The integration of the pdf from ¢ to oo becomes

/é ” f(c)dc = 2P (B-l—c) _1 (3.56)

x

The CMRR definition for processes is thus
CMRR = (30;)! (3.57)

where 99.73% of a sample set will be greater than (30;)~!. The approximated mean and
variance of the CMRR have the same equations (3.42) and (3.43), but the E{|y|} and o}y

should be modified as follows:

E{lyl} = ozy/= (3.58)

Tly| (3.59)

|
HQN
~~
—
|
ERRN
N’

3.5 Offset Analysis

The offset voltage of an op-amp consists of two components: a deterministic offset and a
random offset. The former results from improper dimensions and/or bias conditions, so it can
be reduced to a very small value by careful design. The latter is due to the random errors in
the fabrication process, i.e., mismatches in identically designed pairs of devices. For two-stage
op-amps the first-stage will have a dominant effect on the offset. Therefore, the total input
referred offset voltage of the two-stage op-amp will be highly affected by the first-stage random
offset voltage. The input offset voltage, Vog, is defined as the differential input voltage that
is required to make the differential output voltage exactly zero. If both input terminals are

grounded, then the input referred offset voltage of the first stage can be expressed as

Vo
Vos = —&
_ Alp
Im
_ Alp
2Ip/(Vasi — Vri)
_ Vgsi—Vp;Alp
= - T (3.60)

where V, is the first-stage output voltage, and A is the first-stage small-signal voltage gain.
Since Alp is mainly affected by the mismatch in the threshold voltage and the device

width and length, and other factors can be ignored {79], we will consider only offsets in the Vr
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and W/L of the input differential pair (M1 and M2) and the current mirror pair (M3 and M4)
in Fig. 3.1. The Alp; = Ip; — Ip; due to the mismatch of the input differential pair and the
Alp; = Ips — Ips due to the mismatch of the current mirror pair are given from Section 3.8.
Substituting (3.89) and (3.90) into (3.60), we have the input offset voltage due to the mismatch
of the input differential pair,

Vesi — Vri (Wip2 — W- Lopo— L
Vosi = Viara — Vrirs + GS:2 Ti ( lew- 2R | 2R2L- 1R2) , (3.61)
1 )

and the input offset voltage due to the current mirror pair,

Vores = Vasi — Vri ( Wape — War2 n Lspa — LSRZ) + Vesi — Vi
ost 2 Wi L, Vesi — Vri

The total input referred offset will be the sum of these terms (3.61) and (3.62),

(Vrarz — Vr3rz). (3.62)

Vos = Vosi+ Vosi

- Vesi — Vri [sz — Waro n Lap2 — Ligo + Wags — War2

2 W; L; |24
Lspz — Lapz | 2(Vrare — Vrime) | 2(Vrap2 — VT3R2)]
. (3.63
+ L + Vasi — Vri Vasi — Vru (3.63)

Since the offset voltage is the sum of 12 uncorrelated zero mean Gaussian random variables, it

is also normally distributed with zero mean and standard deviation

_ (Vagsi—-Vri) | o [ 1 1 2 1 i
TVos = V2 gy L2+L12 + ow Wi2+W12 +

1

1
4o}, . 40?, 2

: + Il . 3.64
(Vasi = Vri)?2 * (Vasi — Vm)? (3.64)

Therefore, the offset has a Gaussian density function with zero mean and variance ov,.
Assuming again the pseudo worst case as in Section 3.2, and using the data of Table 3.3
and 3.4, the calculated pseudo worst case random offset of the sample op-amp in Fig. 3.1 is 27.9
mV. The offset due to the (W/L) mismatch is 14.1 mV while the offset due to the V1 mismatch
is 13.8 mV. It shows that the two factors give almost equal contribution to the random offset

for the sample op-amp.

3.6 Analysis of Op-amp Errors

The gain of a unity-gain configured op-amp will be exactly one if the op-amp is ideal.

Practical op-amps, however, don’t offer the exact gain because of finite differential gains, finite



Table 3.6: Simulated gains of the op-amp in Fig. 3.6

119

A 386.8 A 386.6
Aq 386.5 Ay 386.2
Ac 0.4811 A, 0.4803
CMRR 805.8 CMRR 805.8
Vos -20.4pV

common-mode rejection ratios, and nonzero offset voltages. In this section, the op-amp errors
associated with these nonideal effects are analyzed. First, we define the different open-loop
gains as shown in Fig. 3.7. We denote the finite open-loop gains of the op-amps which have

different characteristics as follows:

A : Finite CMRR and nonzero offset.
Ag : Infinite CMRR and nonzero offset.
A" : Finite CMRR and zero offset.
A:, : Infinite CMRR and zero offset.

Simulated results of these gains for the op-amp in Fig. 3.6 obtained by neglecting statistical
variations are shown in Table 3.6, where A., CM RR, A'c, and CMRR' are the common mode
gains and the common mode rejection ratios of a nonzero offset op-amp and a zero offset op-
amp, respectively. The Vpg is the input referred offset voltage. The op-amp in Fig. 3.6 differs
from that in Fig. 3.1. It has a programmable current mirror instead of a simple one as a load
of the differential input pair. The programmable current mirror can be used to compensate the
offset voltage of the op-amp by adjusting the bias voltages VT'1 and/or VT2 as described in [6]
and [81]. Basic concepts concerning the influence of each nonideal factor are briefly reviewed
in the following three subsections. This is followed by discussions about the combined effects

of the nonideal factors.

3.6.1 Finite Open-loop Gain Effect

Assuming that an op-amp has an infinite CMRR and a zero offset, the output voltage of
the unity-gain configured op-amp will be
.Y
o

= Vi 3.65
Yy (3.65)

If the pure differential gain A; is infinity, then the input V; will be equal to the output V,,

but the output of a practical op-amp will be less than the input due to the finite open-loop
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Figure 3.6: Two-stage CMOS operational amplifier with a programmable current mirror

gain. Hence, the gain of a unity-gain configured op-amp will be always less than one under the

assumption of infinite CMRR and zero offset.

3.6.2 Finite CMRR Effect

Considering a finite-CMRR and zero-offset op-amp which is equivalent to the op-amp in
Fig. 3.7 (c) if the voltage source Vpg is removed, the output of the op-amp will consist of two

terms.

Vo = VeA,+Vad,

Vi+Va )
= —L-ét—zAc +(Va—-W1)4,
_ Vi+Va . '
= somrr et (Va- VA (3.66)

From these equations the op-amp can be modeled as in Fig. 3.7 (d) if the voltage source Vpg

in Fig. 3.7 (d) is removed, where

Vi + V.
Vemrr = -2—0—%4%%7 (3.67)
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Figure 3.7: Equivalent models for a nonideal op-amp interpreting CMRR and offset and
showing differently defined open-loop gains
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If this op-amp is used for a unity-gain configuration, i.e., V1 = V, and Vo = V;, then the output

voltage will be

Vo = AVit+Voppr — Vo)
— ! 4 Vt + Vo _
Hence,
A1+ Ly
d( 2CMRR ) W- (3.69)

AL - o) + 1
It can be seen that an infinite CMRR reduces the equation (3.69) to (3.65). The equation
(3.69) shows that the finite CMRR can compensate or overcompensate the gain decreasing

effect due to the finite open-loop gain.

3.6.3 Nonzero Offset Effect

To investigate the effect of nonzero offset, we consider an nonzero-offset and infinite-CMRR
which is equivalent to the op-amp in Fig. 3.7 (b) if the voltage source Vopmpr is removed. The
input referred offset voltage can be defined as the voltage applied at the positive input so that
the voltage existing at the output becomes zero. Thus, the nonzero-offset and infinite-CMRR
op-amp can be modeled as a voltage source Vps which is equivalent to the input offset voltage
and a pure differential op-amp. This model is equivalent to Fig. 3.7 (d) if the voltage source
Vemrr is removed. If this op-amp is used for a unity-gain configuration, then the output

voltage will be

Vo = Ay(Vi - Vos = Vo). (3.70)
Hence,
Vo = —i(v - Vos) (3.71)
o 1 + A; 1 b

where it is well known that the offset voltage can be either positive or negative.

3.6.4 Total Op-amp Error

Now, the three effects are combined to derive the total op-amp error. The nonideal op-amp
shown in Fig. 3.7 (2) can be modeled as two voltage sources, Vos and VoamRr, applied at the
positive input and a pure differential op-amp which has an infinite CMRR and a zero offset

voltage as shown in Fig. 3.7 (d). The output is then

V, = AyVa—Vos+ Vomrr - Vi)
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Vi+ Vo~ Vos

= Ay(Va—Vos+ e

- V). (3.72)

If this op-amp is used for a unity-gain configuration as shown in Fig. 3.8 (a), then the output

will be
Vo+ Vi — Vos

2CMRR'
The total output affected by a finite gain, a finite CMRR, and a nonzero offset is thus given by

Vo= Ay(Vi~ Vos + ~ Vo). (3.73)

Ad(l + 2CMRR’)

V, = (V: — Vos) (3.74)
o Ad(l ZCMRR onar) 1
where ,
' Ad Aq
CMRR = ™ = CMRR. (3.75)

If the op-amp is used for a high-gain conﬁguration as shown in Fig. 3.8 (b), then the output

becomes ,
Vv, = ,A“(l * 2omAR 2CMRR ) (Vi = Vos) (3.76)
AgB(1 ~ ZCMRR somrr) T1
where
Ry
B = ik (8.77)

From the equation (3.74), it can be easily seen that the equations (3.71), (3.69), and (3.65) can
be obtained by setting Vog = 0, CMRR' = 00, and both of them, respectively.

From the equation (3.74) and the data given in Table 3.6, the calculated unity-gain con-
figured output voltage of the op-amp in Fig. 3.6 is 0.9987V when V; = 1.0V while the simulated
settling point of the output voltage is 0.9988V. This result shows that the equation (3.74) gives
a very consistent result with the simulated one. In this example the random CMRR and the
random offset have not been considered, but the correctness of the equation (3.74) has been
demonstrated. In practical op-amps that kind of accuracy could not be obtained because of the
random components described in the previous sections. With the assumption that Vpg = 0,
the output errors of the op-amp in Fig. 3.6 as a function of CMRR were calculated at different
closed-loop gains, and the results are shown in Fig. 3.9. Even though the offset is zero and the
CMRR is very high, the output error of the unity-gain configured op-amp (8 = 1) is about
0.3% due to the finite open-loop gain. If the CMRR is 52dB, then the output error is nearly
zero. This shows that the finite CMRR can reduce the error attributable to the finite gain
as mentioned in Section 3.6.2. From the figure it can be also seen that high-gain configured

op-amps show more errors than low-gain op-amps.
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Figure 3.8: (a) Model of a unity-gain configured op-amp, (b) Model of a high-gain config-
ured op-amp
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Figure 3.9: Output error of the op-amp in Fig. 3.6 versus CMRR with 3 as a parameter.
The offset voltage Vos = 0, and the opéen-loop gain 4 = 52dB

If the offset of a given op-amp is compensated, and the compensated offset range is known,
then the output error of the given op-amp can be analyzed from (3.74) and (3.76) because the
CMRR range of the op-amp can be easily found from the pdf of the CMRR derived in Section
3.3 or the CMRR definition in Section 3.4. Assuming that the offset is adjusted to less than
1mV in magnitude, the output errors of the sample op-amp in Fig. 3.1 were analyzed. It was
shown in Section IV that the sample op-amp in Fig. 3.1 had CMRR for the process of about
56dB. Thus, the CMRR of most individual amplifiers will be greater than 56dB. Fig. 3.10 shows
the output errors relative to 2V of the unity-gain configured sample op-amp as a function of
the input V;. From the 56dB CMRR curves in Fig. 3.10(a) and the 100dB CMRR curves in
Fig. 3.10(b), it can be seen that the output errors are less than 0.2% through the input range
of —2V to +2V if the magnitude of the input offset is less than 1mV. As expected, the 56dB
CMRR curves show reduced errors compared to those of the 100dB CMRR curves.

3.7 Conclusions

The CMRR and offset of two-stage CMOS op-amps have been analyzed. Equations repre-
senting their statistical characteristics have been derived. Using these equations, we can readily
find the distribution, mean, and variance of the CMRR and offset if the process parameter vari-

ations are given. The derived equations have shown that the CMRR pdf is similar to that of
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Figure 3.10: Output error of the op-amp in Fig. 3.1 versus V; with Vps as a parameter.
The open-loop gain A = 58dB, and CMRRs are: (a) 56dB, (b) 100dB
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a Gaussian random variable, but the mean is not zero and the symmetry is somewhat skewed,
whereas the offset has a Gaussian distribution with zero mean. The CMRR for the processes
has been defined. The CMRR is defined by (30,4 |d|)~! for the op-amps which have both dom-
inant deterministic and random CMRR so that 99.86% of a large sample can be greater than
the defined value. For the op-amps whose deterministic CMRRs are nearly zero, (30,;)~! can be
used for the definition of the CMRR, where 99.73% of a large sample satisfies the specification.
The variable d is the ratio of the deterministic common-mode gain to the differential-mode
gain and o, is the standard deviation of the ratio of the random common-mode gain to the
differential-mode gain.

The op-amp errors due to finite open-loop gains, finite CMRRs, and nonzero offsets have
been analyzed. A finite differential open-loop gain always makes the gain of a unity-gain
configured op-amp less than one, and a finite CMRR can compensate for the error attributable
to the finite open-loop gain unless it is too small. If the compensated offset range is known,

then the op-amp error range can be found.

3.8 Derivation of mismatch components

If the channel-length modulation effect is ignored, the small-signal transconductance gains

of the paired transistors M1 and M2 which act in the saturation region are given by

S (W '

gm1 = 2K (T)I(VGs,'—VTI) (3.78)
3%

gm2 = 2K (7)2(vcs,-—vn). (3.79)

where K’ = uCox/2. Only mismatches in the Vy and W/L are considered. The similar

expressions as in (3.6) for the random variables, L, W, and Vr, can be used as follows:

Ly = L;+ Liri + LRy, Ly=Li+ Lip1 + Lape
Wi = W+ Wi+ Wi, Wo=W,+Wp +Wane (3.80)
Vri = Vri+ Vrim + Vrige, Vra = Vri + Vrir1 + Vraro,

where L;, W;, and Vr; are the nominal values, and the subscript 1 and R2 are the same as
before.
Using these definitions, g,,; can be approximated by ignoring higher order terms,

W; + Wip1 + Wire
L; + Lip1 + L1pg2

gm1 = 2K ( ) (Vasi — Vri — Vrirt — V11R2)
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2K’ (%) (Vasi — Vi) (

& g (1 n Wipi + sz) (1 _ Lip + Lmz) (1 _ Vriri 4+ Vrime
Wi Li Vasi — Vri
& g (1 + Wi + Wine  Lipi + Lirz _ Vriri + VT1R2) .
Wi Li Vasi — Vri

By the same way,

Wiri+ Warz  Limi + Lere _ Vrima + Vrare

Im2 = Gmi <1 + 7 I

Hence,
Wirs — Wapz . Lops — L1r2

Vasi — Vri ) )

Im1 — 9m2 = Gmi ( W + I
Since gm1 — gm2 = gm1R2 — 9mzre from (3.6) and (3.9),

gmiR2 — gm2R2 _ Wire — Wops | Lar2 — Lime

1+ (Wip1 + Wira)/ W;) (1 _ Vriri + Vrire

1+ (Lip1 + L1p2)/ Li Vasi — Vri

)

Vrora — VT1R2)

Vesi — Vri

Vrar2 — Vrige

Imi 146 Li
By the same procedure,

gm3R2 = gmdR2 _ Wapo — Wars n Lirs — Laps

Vasi — Vri

Vrare — Vrare

gmi Wi L;

Vasi — Vi

Since the drain current Ip and the output conductance g4 can be expressed as

Ip

a (W
K () (Vas - viy
g4 = Alp,

by the same method as above we can obtain

gd1r2 — 9di2R2 _ Wire —Wopa | Lar2 — Lime

2(Vrapz2 — Vrig2)

9di W; L; Vasi — Vri
and
Ipy—Ip; _ Wire—Wire + Lopy — L1po + 2(Vrar2 — VriR2)
Ip; W; L; Vasi — Vri
Ips — Ipyg _ Wars — Wape n Lipz — Lzpz . 2(Vrar: — Vrara)
Ip W, L Vast — V1

where Ip = Ip; = Ip;.

1)

)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
(3.87)

(3.88)

(3.89)

(3.90)
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CHAPTER 4. AN AUTOMATIC OFFSET COMPENSATION SCHEME
WITH PING-PONG CONTROL FOR CMOS OPERATIONAL
AMPLIFIERS

4.1 Introduction

In many op-amp applications, offset cancellation or reduction is critical because an am-
plifier input offset voltage limits the capability of the system. An offset voltage of 10mV to
30mV is typical for CMOS amplifiers. This can not be tolerated in many applications. For
continuous-time integrated applications, a number of offset cancellation schemes have been re-
ported [6],[81],[82]-[89]. Classical approaches to build low-offset MOS op-amps through device
optimization are inefficient and have performance limitations. To obtain low offset, special
circuit techniques are additionally required. Commonly used auto-zero techniques use analog
switches and capacitors to implement low-offset amplifiers. The offset cancellation of these
techniques is degraded by the charge injection due to the autozero switches. The schemes have
50% duty cycles making them unsuitable for continuous-time applications.

In this chapter a digital correction technique is presented to keep the noise of the offset
compensation circuit small. The objective is to compensate for inherent matching-induced oft-
sets to achieve an op-amp with an offset voltage of less than 5001 V. The proposed architecture
is available to achieve even much lower offsets. A ping-pong architecture is employed to ob-
tain a 100% duty cycle. With the ping-pong control the op-amp is capable of continuous-time
operation, yet the offset is periodically adjusted making the offset compensation scheme insen-
sitive to time and temperature drift. The scheme also requires no off-chip components and no
adjustments during manufacturing. This compensation is obtained at the expense of modest
extra chip area for the digital correction circuit. The scheme is most practical, from an area
viewpoint, for large chips where many low offset op-amps are required. In these applications
the digital correction circuit can be used in common, thus the area required for the digital

correction circuit comprises a small fraction of the total die area.
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Figure 4.1: Programmable current mirror biased with (a) resistors (b) transistors

4.2 Offset Tuning Strategy

To adjust offset the programmable current mirror shown in Fig. 4.1 is used as the load
of the differential input stage. The current mirror gain of the programmable current mirror in

Fig. 4.1(a) is given by

Iout Im2 (1 + gmlRl)
A= o 8 | eee— —— 4.1
I; gm1 \1+ gmaR2 (4.1)

The current mirror gain can thus be adjusted or programmed by changing the resistor values.
A variable resistor can be implemented with a MOS transistor which is biased to operate in a
linear region as shown in Fig. 4.1(b). For the case of Vpg << Vgs — Vr, MR1 and MR2 behave

as linear resistors of value W
1/R~ uCox (T) (Ves — V1) (4.2)

By changing the bias voltages VCB and VC, the resistor values and thus the current mirror
gain can be adjusted.

The adjustable range of the current mirror gain varies with the device sizes of MR1 and
MR2 as shown Fig. 4.2. A small W/L increases the resistor value and thus increases the
adjustable range of the current mirror gain which is directly related to the offset adjustable
range of the op-amp. Therefore, the sizes of MR1 and MR2 should be selected according to the

expected offset voltage range of the op-amp to be compensated.
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Figure 4.2: Simulated current mirror gain adjustable range of the programmable current
mirror )

These kinds of adjustable current mirrors have been used for auto-zero offset compensation
(81],[83], where the op-amp output is fed back to a control port (e.g. VC) of a programmable
current mirror during auto-zero periods, and the compensation voltage is stored on a capacitor
to be utilized during signal processing periods. This analog scheme is very simple and requires
small area, but its performance is limited by two factors. First, the compensation voltage
is actually the op-amp output offset which is small but can not become zero. Secondly, the
compensation voltage is contaminated by the charge injection of analog switches. Thus, there
exists a lower limit of compensation at given supply voltages although it can be optimized by
carefully selecting the op-amp gain and/or the gain from the control voltage to the op-amp
output. The lower limit can be further reduced by using a compensation voltage generated
from a digital correction circuit instead of one fed directly from the op-amp output. The
digital scheme does not suffer from the charge injection problem. The performance of digital
compensation is limited mainly by the resolution of the control voltages, and thus much smaller
offset voltages are obtainable at the expense of more chip area.

Fig. 4.3 shows an offset adjustable two-stage CMOS op-amp with a programmable current
mirror as the load of the input stage. The op-amp has been designed for high-speed and high-

precision applications in a 1.0-um CMOS technology. Since the first stage has the dominant
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Figure 4.3: Offset adjustable two-stage CMOS op-amp with a programmable current mir-
ror

effect on the offset, the input referred offset voltage of the op-amp can be expressed as
Vos,in = Vosi + Vosi + Vosr + Vos,sys (4.3)

where Vpsi, Vosi, and Vo, are the input referred random offset voltages due to the mismatches
of the pairs (M1, M2), (M3, M4), and (MR1, MR2), respectively, and Vps,sys is the systematic
offset voltage. If VC=VCB, the systematic offset is usually small and can be reduced to a very
small value by careful design. Clearly, Vos,sys is a function of the bias voltage VC if VCB is
fixed. For appropriate device sizes, there exists a certain value VC such that the total offset
voltage Vps,in is zero. The random offset voltage can thus be compensated by intentionally
introducing an offsetting systematic offset voltage that is dependent upon VC.

Assuming VC=VCB, the random offset voltages Vosi, Vosi, and Vpg, can be obtained as
in the previous chapter or in [5]. The standard deviation of the sum of Vpg;, Vosi, and Vos; is

given by

_ Vesi—=Vril | 5 (1 1 1 2 1 1 1
TVosin = 7z t\mtptr)tov\wtwe T wn

40%,T. 4o}, a%,T 2
i . : 4.4
+(VGS:' - Vr;)? + (Vasi — Vri)? + (Vasr ~ Vrr)? (44)
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where the subscript i denotes the input transistors M1 and M2, the subscript ! denotes the
load transistors M3 and M4, and tﬁe subscript » denotes the transistors MR1 and MR2 used
as resistors. The standard deviation of the input offset voltage of the op-amp in Fig. 4.3 can
be calculated based on (4.4). In this calculation

or =ow = 0.014um (4.5)
v = (4.6)
were used as in the previous chapter. The designed transistor sizes, L; = L; = L, = lum,
W; = 240um, W, = 86um, and W, = 16um, and the simulated excess voltages, Vgs; — Vi =
—0.626V, Vgs1 — V= 0.427V, and Vgsr — Vrr = 3.753V were used for the calculation.
The calculated oy, is 12.2mV. This is somewhat high due to the short channel lengths of the
input-stage transistors. The minimum sizes of the channel lengths were selected to obtain the
fast settling characteristics of the op-amp.

To obtain a 99.7% offset yield, the sizes of MR1and MR2 will be determined such that
the offset voltage of +30v,; can be covered by adjusting VC. For the present design the ratio
of (16/1) was selected to be more conservative for the achievable offset resolution. With this
selection the offset adjustable range of the op-amp was simulated using a unity gain configura-
tion. The results are shown in Fig. 4.4. An offset adjustable range from —16.2mV to +19.6mV
can be obtained by changing the bias voltage VC from 1.5V to 2.5V with VCB fixed to 2V,
This offset adjustable range which is equivalent to —1.330v, to +1.610v, leads to a 85.5%
offset yield, provided the mean of the offset voltages is zero. The lower and upper limits of the
bias voltage are determined by the reference voltages of the D/A converter (DAC) which will
be discussed later. A wider adjustable range can be obtained by changing the DAC reference
voltages, but the linearity will be degraded due to the nonlinearity of the NMOS resistors. The
resolution will also be degraded by increasing the range of the DAC reference voltages at a fixed
number of bits.

A simple way to find VC such that the total input offset voltage Vps,in becomes zero is as

follows:

1. The output voltage of the op-amp is compared to zero when both the input terminals are

grounded.

2. The bias voltage VC of the transistor MR2 is adjusted in the direction of reducing the

output offset voltage.

3. The procedure is repeated until the op-amp output voltage crosses zero.
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Figure 4.4: Simulated offset adjustable range of the op-amp in Fig. 4.3. VCB is fixed to
oV .

This offset tuning strategy is depicted in Fig. 4.5. The up/down counter is initially set to
half of full scale such that the DAC output VC is equal to the fixed bias voltage VCB. The
performance of the offset reduction depends upon the resolution of the bias voltage VC and the
offset of the comparator.

Fig. 4.6 shows a simplified block diagram of the entire offset compensated op-amp. It
consists of three blocks: an op-amp block, a timing signal generator, and an offset tuning block.
The op-amp block consists of two identical op-amps and several analog switches for ping-pong
operation. The timing signal generator produces signals, P1-P4, to control the ping-pong
structure. The offset tuning block will reduce the offset voltages of the op-amps by adjusting
the bias voltages VC1 and VC2. Circuit details and functions of the blocks are presented in

the following sections.

4.3 Op-amp Block with a Ping-Pong Structure

The op-amp block diagram is shown in Fig. 4.7. The block consists of two identically
designed op-amps of Fig. 4.3 and several switches which are used for implementing a ping-pong
structure. VC1 and VC2 are the bias voltages of the transistor MR2 of OPAl and OPA2,
respectively. One of the op-amps will be in a normal mode at any one time while the other is

in an offset tuning mode. A 100% duty cycle can be obtained by interchanging their roles. The
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signal Viony is used to configure the op-amps either in an open-loop or in a closed-loop with
unity gain. The other switches are controlled by the timing signals, P1-P4, generated by the
timing signal generator to achieve the ping-pong operation. A similar operation was introduced
in [90],[91], where two identical resistors which are implemented with NMOS transistors biased
in the ohmic region and capacitors are alternatively tuned to obtain accurate RC products for
continuous-time filters. Simulated performance of the uncompensated op-amp block is shown

in Table 4.1. The SPICE simulation was performed with the circuit extracted from its layout.

Fig. 4.8(a) shows the timing diagrams of P1-P4. During the first phase, OPA1 processes
the input signal while OPA2 is in the offset tuning mode. A phase is defined here as the time
duration from the moment that two op-amps interchange their roles to the next interchanging
moment. Each phase consists of 2"~! (128 for n=8) clock (CP) periods. The offset tuning
block uses V,; which is the output offset voltage of OPA2 at this time to generate an offset
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Table 4.1: Simulated performance of the op-amp block of Fig. 4.7

Specification Performance
Settling Time (~1V to 1V Step Input)
0.2% Error Limit, C=1PF 21.6 nsec
Input Systematic Offset Voltage 160 pV
Open Loop Voltage Gain 700 (56.9 dB)
Unity Gain Frequency 113 MHz
Phase Margin 61°
Input Common Mode Range +2.0V
Output Voltage Swing +19V
Power Dissipation 45.9 mW
CMRR 56 dB

control signal VC2. When the op-amps interchange their roles, P3 first goes to high at the
128th CP falling edge, such that the signal input is also connected to OPA2. After that, other
three timing signals, P1, P2, and P4 change their states after one CP period. At this time the
transient in OPA1 to be used for tuning does not affect the tuning process because updating
the bias voltage VC1 is made after one clock period, and the one clock period is made long
enough for the op-amp to finish its transient.

An expected offset voltage waveform is shown in Fig. 4.8(b). During the reset (when the
signal ‘IS’ is ‘0’) the states of the four timing signals are (P1,P2,P3,P4)=(1,0,1,1), and thus,
the output of the op-amp block V,,; will be the initial uncompensated output offset voltage of
OPA2 if the inputs are grounded. Of course, the magnitude of the offset voltage depends on
the configuration of the op-amp. During the first phase, i.e., (P1,P2,P3,P4)=(1,1,0,0), V,,, will
be the uncompensated output offset voltage of OPA1, and the offset of OPA2 is compensated
by the offset tuning circuit. Therefore, during the second phase (P1,P2,P3,P4)=(0,0,1,1), the
compensated offset voltage of OPA2 will appear at the output while the offset of OPA1 is being
adjusted. The compensated offset voltage of OPA1 can be thus found during the third phase.
In the following phases only the changes of the offset due to the temperature and time drift
will be compensated.

The compensated offset voltages of the two op-amps can be different from each other, so

the equivalent offset voltage of the op-amp block after calibration can be defined by

Voseg = maz{|Vosi|, |Vos2l} (4.7)

The ping-pong operation makes it possible that the op-amp can operate in a continuous-time

mode while the offset voltages are kept small after the calibration time that corresponds to
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Figure 4.9: Output delay of the op-amp block with respect to VC change

128 CP periods. The temperature drift of the offset voltages can be also compensated by the
ping-pong operation.

Fig. 4.9 shows the simulated output delay of the op-amp block when VC is changed. The
initial output voltage of the open-loop op-amp block was assumed to be 0.114V which is due
to the systematic input offset voltage. The random offset was not considered. To reduce the
offset, VC was decreased from 2V to 1.996V at t=1usec. The step, about 4mV, corresponds
to the resolution of the DAC, i.e., 1LSB of 8-bit. The VC change causes the reduction of the
output voltage, and thus, the input offset voltage. The delay time of the op-amp block with
respect to the VC change is about 5usec. Thus, one CP period must be longer than the delay
time to correctly update the bias voltage VC.

4.4 Offset Tuning Block

The block diagram of the offset tuning block is shown in Fig. 4.10. It consists of a com-
parator, a zero crossing detector (ZCD), two 8-bit up/down counters (UDC block), and two
small 8-bit D/A converters (DAC). This block detects the output voltage V;; of the op-amp
to be tuned and then provides an updated bias voltage VC1 for OPA1 and VC2 for OPA2
such that the offset voltages are reduced. The timing signals, P1 and P3, generated from the
timing signal generator determine which op-amp will be tuned, so only one of the two up/down

counters is enabled to count. The counters are initially set through the signal IS to half of full
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Figure 4.10: Block diagram of the offset tuning block

scale. This is done to accommodate for the inherent bipolarity of the offset voltages.

If the comparator output is high, indicating that the offset is greater than zero, then the
down signal of the up/down counter is set to ‘1’, so that the counter counts down to decrease
the bias voltage VC. The current mirror gain of the programmable current mirror is then
decreased, and the op-amp output voltage is also decreased, i.e., the offset voltage is reduced.
As long as the comparator output does not change, this procedure is repeated until P1 or P3
is changed. If the comparator output goes to ‘0’ before the phase is changed, then the zero
crossing detector detects this change and sets the count enable signal CE to ‘0’ to prevent the
op-amp output from oscillating. A change of the comparator output means that the op-amp
output crosses zero, and the minimum offset is achieved. Thus, no further update of the bias

voltage is required.

4.4.1 Digital-to-Analog Converter

A simple R and 2R resistor ladder network shown in Fig. 4.11 is used for an 8-bit DAC. The
resistor ladder is implemented by PMOS transistors with the W/L ratios of 2/5 for R and 2/10
for 2R. The ratio of the PMOS transistors used for the decoding switches is 10/1. The binary
signals D0-D7 are the outputs of the up/down counter. One advantage of this simple structure
is that the area is very small compared to other structures and increases only linearly with

the number of bits, For the proposed offset compensation scheme the DAC does not require



141

excellent linearity because some degree of nonlinearity can be tolerated unless the resolution
is significantly degraded. Even nonmonotonicity in the DAC can be tolerated. Nonlinearity
and nonmonotonicity result in minor degradation of the resolution without affecting the correct
operation of the offset compensation. The simple structure has been chosen to keep the area
small.

The simulated output voltages of the designed DAC at different digital settings are shown
in Fig. 4.12, where V.54 =2.5V and Viey- =1.5V. The simulated result shows that the DAC
has the expected nominal nonlinear characteristics, The DAC output voltage at digital setting
128 is 2.04V instead of 2.0V due to the nonlinearity. Fig. 4.4 shows that the op-amp output
also exhibits a modest nonlinear relationship between the bias voltage of the programmable
current mirror and the offset voltage. Due to the nonlinearity of both the DAC and the
programmable current mirror the simulated worst-case resolution is 0.22mV when the offset
adjustable range is —16.2mV to +19.6mV, which is degraded from the theoretical resolution of
0.14mV(=35.8mV/256) but satisfies the targeted resolution of 500pV.

The resolution can be readily improved by increasing the number of bits of the DAC and
the up/down counters at the cost of a small increase in die area. If a 10-bit DAC is used,
then a theoretical resolution of 35uV(=35.8mV/1024) can be obtained at the cost of two more
flip-flops for a counter and 8 more PMOS transistors for a DAC. Another way to improve the
resolution is to reduce the range of the DAC reference voltages. This will, however, reduce the

offset adjustable range.

4.4.2 Comparator

A simple two-stage comparator with the output buffered is employed to compare the op-
amp output offset voltage to zero. The designed device sizes are W;/L; = 28/2and Wi/L; = 9/4.
The standard deviation of the random offset voltage of the designed comparator was calculated
based on (4.4), resulting in oy,;=6.5mV. This comparator offset voltage can be tolerated
because the op-amp in an offset tuning phase is in an open-loop configuration (see Fig. 4.7),
and thus, the output offset voltage preserved at the input of the comparator is 700 (the open-
loop gain) times greater than the input offset voltage of the op-amp. Since 8-bit DACs are used
for the present design, and the simulated resolution of the offset adjustment is 0.22mV, the
minimum output voltage of the op-amp which must be resolved by the comparator is 154mV
(0.22mV x700) which is much greater than the comparator offset voltage. Thus, only a small
fraction of the comparator input offset which is the comparator input offset voltage divided

by the open-loop gain of the op-amp will contribute to degradation in the achievable offset
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resolution.

4.5 Experimental Results

The test circuit was fabricated in a 1.0-um n-well CMOS process. The chip photomicro-
graph is shown in Fig. 4.13. The total circuit area excluding pads is 0.99mm?. The op-amp
block occupies 14.7% of the total area, and the comparator and the two DACs occupy 0.84%
and 2.12%, respectively. The remaining 82.3% is for the digital control circuits and connec-
tions. The extra large area of the digital section can be compensated somewhat by using it in
common for several op-amps. One simple example is to use time sharing operation. For the
case of using two op-amp blocks, only one up/down counter can be used along with 4 DACs
by including latches before DACs, and other blocks can remain unchanged. With additional
multiplexing circuits and connections for time sharing operation, one digital tuning circuit can
serve for two op-amp blocks such that two among four op-amps are always available for signal
processing while one of the remaining two op-amps is in an offset tuning mode. This scheme
can be extendable for circuits including more op-amp blocks.

The CP frequency is set to 46.9 kHz (T¢p = 21.3us). The period of one phase is thus

T, = 128Tcp = 2.73ms
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A closed-loop configuration with a gain of 100 is used to characterize the offset voltage waveform
of the op-amp block. The closed loop configuration is obtained by connecting two resistors
(R1=1KQ and R2 = 100K ) around the inverting input terminal, when the signal ‘Vions’ in
Fig. 4.7 is set to ‘0’. With the inputs grounded 100 times the input offset voltage will appear
at the output terminal V,,;. In this case a periodic square waveform that is generated from a
function generator is used for the reset (‘IS’) signal, and this serves as a triggering signal to

help an oscilloscope catch the nonperiodic offset voltage waveforms more easily.

4.5.1 Measured Offset Waveforms

A typical output offset waveform measured from one of the test chips is shown in Fig. 4.14(a).
The waveform was obtained from the closed-loop feedback amplifier in the gain of 100 config-
uration. The reset signal is changed from ‘0’ to ‘1’ at ¢t = 2.73ms when ¢ = 0 is referenced to
the left edge of the trace. The horizontal scale is 2.73 ms/div which is the period of one phase
Tp. The vertical scale is 200 mV/div, and the vertical axis offset is 500 mV. It can be seen that
the measured offset waveform is very similar to the expected waveform shown in Fig. 4.8(b).
The first two high states are due to the uncompensated offset voltages of OPA2 and OPAl,
respectively. The following low states are the compensated offset voltages. The initially un-
compensated input offset voltages and the compensated offset voltages can be obtained from
the plots by dividing the output voltages by the closed-loop gain of 100.

By connecting V,; (see Fig. 4.7) instead of V,,; to the oscilloscope input, the offset com-
pensation process can be observed more clearly because V,; is the output offset voltage of the
open-loop op-amp being tuned, and this signal is compared with zero by the comparator and
finally reduced by the offset tuning circuit. The measured V,; is shown in Fig. 4.14(b). From
the plot it can be seen that the initial uncompensated large offset voltages of OPA2 and OPA1
are reduced significantly during the first and second phases, respectively. It can be also seen
that because of the large uncompensated input offset voltages and the large open-loop gains of
the op-amps, the outputs of the open-loop op-amps initially saturate.

During the first phase the initial offset voltage of OPA2 is continuously decreased, and the
offset compensation is stopped when the offset crosses the zero line. Thus the offset sits at a
small negative level. In the next OPA2 tuning phase, i.e., the third phase, the tuning circuit
detects the negative polarity of the offset and starts to adjust the offset toward the positive
direction. After the initial tuning, a single one-step adjustment (1LSB change of the DAC) is
usually enough to make the offset cross the zero line. The zero crossing detector then makes

the adjustment stop. This process is repeated in the following tuning phases. Therefore, each




Figure 4.14:

146

|

P S

2.7% fsddiw 10, G654000 ws

4‘_#/
L

h

10, E6SA000 ws

2,73 wsdday -

(b)

(a) Output offset waveform measured at Vi, with the op-amp having a
closed-loop gain of 100 (VS: 200mV /div, Offset: 500mV) (b) Output offset
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Table 4.2: Measured initial and compensated offset voltages

[ # | | Initial Vos Final |Vos| || # | | Initial Vog Final |Vpg |
1| OPAl| 99mV 157 uv 2 | OPA1l| 15.0 mV 150 pVv
OPA2{ 8.9mV 191 uV OPA2 | 112 mV 309 pv
3 | OPA1| —-6.3mV 219 uV 4 |OPA1| 9.5mV 395 pVv
OPA2 | 24mV 97 uVv OPA2 | 11.6 mV 318 uv
51 OPA1| 80mV 2 pV 6 [ OPA1 | 5.0mV 245 pV
OPA2 | 6.3mV 158 Vv OPA2 [ 23 mV 57 uv
7 | OPA1 | 370 pV 172 uv 8 | OPA1 | 84 mV 102 pv
OPA2 8.5 mV 261 pVvV OPA2 74 mV 185 uv
9 [ OPAl1 | 13.8mV 313 uv 10 | OPA1 | 590 uV 299 uv
OPA2 | 12.6 mV 163 uVv OPA2 | 1.5mV 269 uV

op-amp will have two compensated offset levels, i.e., one is positive and the other is negative
as shown in Fig. 4.14(b). Thus, the compensated op-amp will have bipolar offset voltages.
Unipolar offset compensation and correspondingly an overall decrease in offset voltages can be
readily obtained by slightly modifying the control logic (the zero crossing detector block) such
that compensated offset voltages approach the zero crossing from the same direction during
each phase. Doing this, the compensated offset variation will be substantially reduced, and the

corresponding offset voltages are reduced by a factor of 2.

4.5.2 Offset Compensation Results

The compensated offset voltages are measured from V,; by expanding the vertical scale and
dividing the values by the measured open-loop gain. This will be more accurate for small offset
voltages than measurements from a feedback amplifier at V,,; because of the large open-loop
gain. The measured open-loop gains are between 400 and 700. The initial large offset voltages
were, however, measured from V,,; using closed-loop configurations with proper closed-loop
gains which were selected low enough to guarantee that the op-amp outputs do not saturate.

Of 13 chips tested, three showed initial offset voltages outside the compensatable range.
This can be expected because of the low designed offset yield as mentioned in Section 4.2. The
measured initial offset voltages and the compensated final offset voltages are shown in Table 4.2.
Since each op-amp has two compensated offset levels as mentioned above, the greater one in
magnitude is reported in the table. The table shows that most op-amp initial offset voltages are
biased in the positive direction. This suggests a small wafer-level and/or die-level systematic

offset.
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All compensated offset voltages are less than 4004V in magnitude which met our design
specification of 500uV. These offsets are, however, somewhat degraded from the simulated
resolution of 2201V. The degradation is attributable, in part, to the systematic offset which
causes the final steps of the offset control voltage VC to be placed around the lower left corner of
the curve in Fig. 4.4 where the resolution is degraded. The nonlinearity of the fabricated circuit
may be more severe than the simulated one. The comparator offset also partially contributes
to the degradation in offset voltages.

Although the resolution can be improved by a more careful layout, the systematic offset
can be reduced, and the variations of the random offset voltages can be reduced by using 2
more linear portion of the plot in Fig. 4.4, an easier way to improve the resolution without
reducing the offset adjustable range is to increase the number of bits of the DAC. In this case
the comparator offset will ultimately become the dominant factor limiting resolution. Further

improvement with higher-bit DACs can be achieved by compensating the comparator offset.

4.5.3 Transient Characteristics

In many applications there are brief periods of time where the amplifier need not be
operational, and in such applications the transient responses associated with switching the
op-amp from the compensation state into the application state are not of concern since this
switching can occur during these brief periods. Furthermore, the re-compensation rate can be
very small ranging from minutes to days on even weeks in many environments. The effects of
this switching transient even in true continuous operation are, however, very small.

The measured transient characteristics due to the ping-pong operation are shown in
Fig. 4.15. The upper waveform of Fig. 4.15 (a) and (b) was used as the triggering signal
which will be denoted as St, where

Sr = P1-P3.

Therefore, as can be seen in Fig. 4.8(a), the period of St is 128T¢p, and the duration of S7=*0’
is Top. At time A the inputs of the op-amp which have been connected to ground for offset
tuning are switched to the input signal. After one CP period the two op-amps interchange their
roles completely at time B.

The lower waveform of Fig. 4.15(a) is V,; which is the output of the op-amp in an offset
tuning mode. The waveform V,; exhibits the compensated output offset voltage of one op-amp
until time A and shows the output offset of the other op-amp after time B. It can be seen that

since the compensation of the op-amp which is in a new tuning phase is started after one CP
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Figure 4.15: Measured transient characteristics (a) Output offset voltage measured at Vy,
(Lower trace, VS: 500mV /div) (b) Output signal measured at V,,; when the
op-amp is in a closed-loop configuration with a gain of 33 (Lower trace, VS:

500mV/div)
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(continued) (c) Magnified plot of (b) (Upper trace, VS: 200mV /div, Offset:
-1.24V). The triggering signal St is the upper trace of (a) and (b) and the
lower trace of (c) (VS: 1V/div)
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period as mentioned in Section 4.3, the offset adjustment can be observed at time C which is
two CP periods after time B. It can be also seen that no further offset adjustment is observed
at the following CP falling edges such as time D and E since the offset crossed the zero line at
time C, and after calibration a single one-step adjustment is usually enough to make the offset
cross the zero line.

The lower waveform of Fig. 4.15(b) was measured at V;,; when the op-amp block was in a
closed-loop configuration with a gain of 33 and a sinusoidal input was applied. The high-gain
configuration was used to examine the transient characteristics more clearly; With low-gain
configurations the transients were hardly observed. The output transients can be observed
inside the circle on Fig. 4.15(b). Fig. 4.15(c) is a magnified plot of the circle on Fig. 4.15(b).
The displacement of the output signal is due to the difference between the offset voltages of two
op-amps. This displacement can be greatly reduced by using the unipolar offset compensation
scheme as mentioned before.

From the experimental results it can be seen that the transient energy in the output due
to the ping-pong operation is not significant. The transient energy can be further reduced if

the following schemes are incorporated with the current structure:

1. Modifying the switching process such that the output of the op-amp to be used for signal
processing follows the output of the op-amp which is currently being used. This can
be done by connecting the output V,,; with the input of the op-amp in a unity-gain

configuration as shown in Fig. 4.16. This tracking process can be done during St=*0’.

2. Reducing the CP frequency greatly after the first two tuning phases. This can be readily
obtained by modifying the control logic.

3. Disabling the ping-pong operation after the initial power-up calibration and enabling only

on demand. This will also reduce the digital noise associated with the clock pulse CP.

Using these schemes, the transients will be almost negligible, and continuous-time operation

can be achieved without any significant dynamic range loss.

4.6 Conclusion

An automatic digital offset correction method for continuous operation CMOS op-amps
has been presented. A programmable current mirror is used to adjust the offset voltage. A ping-
pong structure is employed to obtain a 100% duty cycle while the offset voltage is constantly

kept small. The proposed offset compensation is not sensitive to time and temperature drift.
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Figure 4.16: An example switching process to reduce the transient effects due to the
ping-pong operation (a) OPA1: signal processing, OPA2: offset tuning (b)
OPA2 tracks the output signal of OPA1 during S7=‘0" (c) OPAl: offset
tuning, OPA2: signal processing

Experimental results show that the designed op-amps can be digitally adjusted to have input
offset voltages of less than 4001V in magnitude. The resolution can be substantially improved
by increasing the number of bits of the DAC, doing layout more carefully, using a unipolar
offset compensation scheme, and employing an offset compensated comparator. Experimentally
measured transients due to the ping-pong operation are not significant. Several schemes have

been proposed to further reduce the transient effects.
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CHAPTER 5. VERY LOW VOLTAGE OPERATIONAL AMPLIFIERS
USING FLOATING GATE MOS TRANSISTORS?

5.1 Introduction

With emergence of increasing number of battery-operated applications, great interest has
been aroused in low voltage circuit techniques. The research efforts for low supply voltage
based operation have been focused mainly on digital circuits [92], especially on the high density
memory circuits such as DRAMs and SRAMs [93],[94].“

The current technology trends for low voltage operation are paralleling the scaling of device
feature sizes and threshold voltages. Very low voltage operation can be possible through device
scaling if the threshold voltage can be scaled down in proportion to the supply voltage scaling
[95]. A 0.1um CMOS device called a low-impurity-channel transistor has been reported in
[96], where the threshold voltage can be scaled down below 0.1V. The scaling of the threshold
voltage, however, requires much more complicated technologies called “substrate engineering”.
One problem with the scaling is the increased threshold voltage variation. There also exists a
lower limit in scaling down the threshold voltage because the scaled down devices experience
problems such as increased leakage currents, short channel effects and parasitic effects which
are much more severe than in large feature size devices.

On the other hand, a floating gate MOS transistor is capable of having a very low thresh-
old voltage without device scaling and without any substrate engineering. The floating gate
transistor (FGT) has been used primarily as a data storage device in EPROM and EEPROM
circuits [97],{98]. Recently, however, the device has started to attract considerable interests
as a nonvolatile analog storage device and as a precision analog trim element because it has
the threshold voltage programmability with nearly infinite resolution as well as the long term

charge retention. Experimental results have demonstrated that the threshold voltage of a test

2 ©1993 IEEE. Reprinted, with permission, from Proceedings of IEEE International Sym-
posium on Circuits and Systems, Chicago, vol. 2, pp. 1152-1155, May 1993.
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FGT can be adjusted in sub-milivolt range increments with a charge loss less than 2% in 10
years at room temperature [99].

Motivated by the unique and promising characteristics of the floating gate MOS transistors,
a threshold voltage tunable op-amp structure for very low voltage (e.g. 0.5V) operation is
presented in this chapter. To utilize the FGTs as op-amp circuit elements, their threshold
voltages must be programmed and tuned. A two-step tuning method is used. One is coarse

tuning, and the other is fine tuning. Two fine tuning methods are presented.

5.2 Threshold Voltage Tunable Op-amp Structure

To obtain an op-amp which can operate with a very low power supply, the threshold
voltages of the floating gate MOS transistors composing the circuit must be reduced. The
FGTs should also have very similar characteristics with those of conventional MOS transistors.
This has been validated in the literature [102].

The structure and the programming operation principles of a floating gate MOS transistor
are well known and will not be described in detail here, except to note that when a large
enough field is present across the gate oxide, in most existing FGTs Fowler-Nordheim electron
tunneling allows charge to be transferred to or from the floating gate, depending on the polarity
of the field. The charge amount to be transferred depends on the magnitude and duration of
the programming pulse that is needed to produce a large enough electric field in the tunnel
oxide. Since charge transfer to or from the floating gate affects the threshold voltage of the
FGT, three variables, the magnitude, polarity, and duration of the programming pulse, can be
used to control the threshold voltage.

One method of tuning the threshold voltage entails placing the FGTs in an array as shown
in Fig. 5.1. Each cell terminology is shown in Fig. 5.2. Each cell consists of 6 transistors: a
FGT, three select transistors (SD, SG, and SS) and two switch transistors (S1 and S2). The
select MOS transistors are required to tune the threshold voltage of the selected FGT only,
and thus, the other FGTs that are not selected will not be affected by the tuning process.
The switch transistors are used to connect or disconnect the FGT with other FGTs. A switch
transistor at the source terminal of the FGT is not required since high voltages are not applied
at the source terminal during the threshold voltage tuning. Although each cell has two switch
transistors as shown in Fig. 5.1, two switch transistors are not always required for all cells. The
number of switch transistors can be reduced and depends upon the circuit topology.

The threshold voltage (V;;) tunable op-amp circuit has two operating modes: a V;, tuning
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Figure 5.1: Floating gate MOS transistor array
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Figure 5.2: Floating gate MOS transistor cell terminology

mode and a normal mode. In a V3 tuning mode the cells are disconnected from the main circuit
and sequentially selected through the row and column selection lines so that the threshold
voltages of the FGTs can be tuned. In a normal mode the cells are connected to each other
according to the circuit topology by turning on the switch transistors, S1, and S2 in Fig. 5.2.

The signal CE is used to connect or disconnect the cells from the circuit.

5.3 Vi, Tuning Strategy

One V;;, tuning strategy is presented here. The simplified entire block diagram of the
Vir tunable low voltage op-amp circuit is shown in Fig. 5.3. A counter, a row decoder, and a
column decoder can be used to sequentially select the cells of the FGT array. The Vi, tuning is
performed in two steps: a coarse tuning and a fine tuning. The coarse tuning is a preliminary
step to provide an environment where the on-chip charge pump and the main circuit are capable
of operating with a low voltage. The fine tuning is for providing a good matching properties
and a desired operating point.

In the coarse tuning all the FGTs that are the elements of the FGT array are approximately
programmed in a one-tuning cycle to have a very low threshold voltage (e.g. 100mV) using an
external high voltage (e.g. 20V). The coarse tuning can be performed using either a closed-
loop mode or an open-loop mode. This action is performed only once just after the circuit is

fabricated. After the coarse tuning the entire circuit operates with a very small power supply
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Figure 5.3: Simplified block diagram of the V;, tunable low voltage circuit
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Figure 5.4: The charge pump circuit constituted of floating gate transistors

(e.g. VDD=0.5V). The fine tuning is performed under the external control signal ST. Whenever
the signal ST is detected, the fine tuning is performed, and the circuit automatically returns
to a normal mode when the fine tuning is finished. The fine tuning need not be a frequent
event because of the long-term charge retention characteristics of the FGTs. This can afford
the possibility of near continuous-time operation.

In a fine tuning mode a high voltage is also required to adjust the threshold voltages of the
FGTs. The high voltage V;y, is developed from VDD with an on-chip charge pump, and thus, no
external high voltages are required. The charge pump consists of an oscillator, diode-connected
floating gate MOS transistors, capacitors, and a voltage regulator as shown in Fig. 5.4. The
detailed operation principles of the charge pump can be seen in [100]. To make the charge
pump operate with a low power supply, the oscillator and the voltage regulator circuits are also

" constituted of FGTs. The threshold voltages of the FGTs in the charge pump circuit are also
adjusted to a very low value (e.g. 100mV) during the coarse tuning step. After that the charge
pump can generate a high voltage V},, from VDD, and the internally generated V,, is used for
the fine tuning.

When the tuning of all cells in the FGT array is completed, the circuit automatically
returns to a normal mode, and the oscillator of the charge pump circuit is also disabled. Thus,
the charge pump does not generate the high voltage V},, any more in the normal mode and is left
in a state where it awaits another ST signal. In the normal mode the switch transistors must
be turned on for the circuit to function correctly. Since the switch transistors are conventional
MOS transistors, they will not be turned on by the very low supply voltage. Hence, another
charge pump circuit is required which can generate a voltage that is high enough to turn the
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switch transistors on in the normal mode. The power dissipation by the generated voltage will
be very small since it is applied at only gate terminals of the MOS transistors and possibly one
or two small drain or source diffusions. The frequency of the charge pump oscillator for the

switch transistors does not have to be high because the load resistance is very high.

5.4 Fine Tuning Method

There can be many fine tuning methods to obtain a good matching property and a desired
operation of the coarsely tuned op-amp circuit. Two fine tuning methods are presented here.
The first method is to adjust the threshold voltages of all FGTs to a predetermined value.
The second method is to adjust the intermediate node voltages of the circuit to pre-assigned
values by adjusting the threshold voltages. The first method will be simpler and more generally
applicable to all kinds of circuit structures than the second method. However, the second
method will give better matching results because it can provide the node voltage matching
while the first method can provide only the threshold voltage matching of the presumably

matched transistors.

5.4.1 Threshold Voltage Fine Tuning Method

The block diagram of the fine tuning block for threshold voltage tuning is shown in Fig. 5.5.
During a V;;, tuning mode this block alternately measures the threshold voltage of a selected
FGT and adjusts it to a desired threshold voltage. It is controlled by the control signal SMC gen-
erated from the control block. The VT control block shown in Fig. 5.6 compares the measured
Vi with the desired Vi, and then, determines the adjustment direction and also determines
through a zero crossing detector whether to keep adjusting or to finish it. If further adjusting
is required, the unit pulse generator generates a unit programming pulse for V;; adjustment.
The resolution of the V;;, tuning depends on the magnitude and width of the unit programming
pulse.

The accuracy of the tuning results also depends on the performance of the VT measurement
block. A simple scheme can be used to measure the threshold voltage. For example, Vi, &= Vgs
may be assumed at low Ipg [101]. This method is very simple, but the measurement error is
somewhat large. Using this kind of simple method, good absolute accuracy can not be obtained,
but a good threshold voltage matching can be obtained for equally sized devices. To obtain
more accurate tuning, a more complicated measurement circuit is required at the expense of

much larger area.
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5.4.2 Node Voltage Fine Tuning Method

To obtain a better transistor pair matching of the op-amp, the internal node voltages can
be adjusted to pre-assigned values by adjusting the threshold voltages. For node voltage fine
tuning, a sequential tuning method for a circuit structure is required because the adjustment
of one node voltage may affect the other node voltages. The order of the FGTs to be tuned
must be carefully determined, and the FGTs must be placed in the FGT array according to
the order. To use the node voltage fine tuning method, the circuit should be changed a little.
Switch transistors for the nodes to be tuned are additionally required in the FGT array for
comparison with pre-assigned values. No measurement circuit is, however, required because
the node voltages are directly compared with the pre-assigned values, as defined by a reference
voltage generator which can generate the same number of reference voltages as the number of
nodes to be tuned. The reference voltages can be selected by the same counter and decoding
circuits that are used for the FGT array.

To demonstrate the node voltage fine tuning method, an example circuit of a NMOS,
instead of an n-type FGT, differential input stage which is shown in Fig. 5.7 was simulated
because there does not exist a good simulator for FGTs. In this simulation it was assumed that
an n-type floating gate transistor and the NMOS transistor have very similar characteristics
except that the former can be adjusted to have various threshold voltages. This assumption has
been validated in the literature {102]. The node voltage changes were simulated by changing the
threshold voltages of the NMOS transistors. The simulation results have shown that the change
of Vr5 changes all the node voltages, V1, V2, and V3, and the change of Vr; also changes all
the node voltages significantly. The change of Vir3, however, causes very small changes in V2
and V3. A change of 10mV in V3 results in changes of less than 0.3mV in V2 and V3. The
node voltages can thus be approximately adjusted to pre-assigned values by selecting the order
of transistors to be adjusted. A possible node voltage fine tuning scheme for the differential

input stage is as follows:
Step 1 The threshold voltage of M5 is tuned to adjust the node voltage V3 to its desired value.

Step 2 The transistor M3 is tuned to adjust V1 to its desired value. This step little affects
the node voltage V3.

Step 3 The transistor M4 is tuned to adjust V2 to its desired value. V3 will also be little
affected by this step, but V1 will be a little bit changed.

Step 4 The threshold voltage of M1 is adjusted to obtain V1axV2 by comparing V1 with V2
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Figure 5.7 NMOS differential input stage

and adjusting M1 in the direction of reducing the difference between V1 and V2. This
step will provide a good matching although the exactly pre-assigned node voltages can
not be achieved. However, their difference will be very small and the convergence speed

will be very fast.

The differential input stage has been tuned according to the above procedure. The tuning
results are shown in Table 5.1. The unit step of the threshold voltage which can be adjusted was
assumed to be 0.2mV. The pre-assigned node voltages were assumed to be 0.23V, 0.23V, and
0.12V for V1, V2, and V3, respectively. The initial node voltages are shown in Table 5.1. Step
1 took 44 unit steps to result in 0.11996V for V3. Step 2 took 14 unit steps to obtain 0.23001V
for V1. This step changed the node voltage V3 by 0.11mV. Step 3 took 13 unit steps to obtain
0.23001V for V2. This step also changed V3 by 0.11mV and V1 by 0.18mV. After Step 3 all
the node voltages are very close to the pre-assigned values. To obtain a good matching between
V1 and V2, Step 4 was performed. Step 4 took only 1 unit step, and the consequence is that
V1 differs from V2 by 0.13mV.

Further reduction of the difference can be obtained by using a narrower unit step, but
the improvement will be restricted by the performance of a comparator that will be used for

comparing between the node voltages and the pre-assigned values. It should also be noted that




163

Table 5.1: Tuning results of the node voltages of a NMOS differential input stage

[ | V1(V) | V2(V) | V3(V) | # of unit steps |
Pre-assigned 0.23 0.23 0.12
Initial 0.24175 0.24175 0.12842
Step 1 0.22748 0.22748 0.11996 44
Step 2 0.23001 0.22766 0.12007 14
Step 3 0.23019 0.23001 0.12018 13
Step 4 0.23003 0.23016 0.12027 1

adjusting the node voltages to pre-assigned values may push one of the transistors into a linear
region, so careful design and selection of the desired node voltages are initially required. The
node voltage fine tuning method can provide better matching property and does not require
a measurement circuit. The tuning scheme should, however, be changed for other types of

op-amp structures.

5.5 Conclusions

In this chapter a method to obtain very low voltage op-amps has been presented. The op-
amp are constituted of floating gate MOS transistors. Adjusting the threshold voltages of the
FGTs makes the op-amp have a capability of operating with very low power supply voltages.
In the simulation here, operation at a supply voltage of 0.5V was obtained. Operation at
substantially lower supply voltage levels can also be readily achieved.

A two-step tuning scheme has been presented. The coarse tuning is used to adjust the
threshold voltages of all FGTs to a small value (e.g. 100mV) in a one-shot cycle so that the
charge pump can operate with the low voltage and thus, the FGTs of the op-amp can be
tuned with an internally generated high voltage from the charge pump. The coarse tuning is
performed only once. The fine tuning which is performed under an external control signal is
used to provide a good matching property and a desired operation of the op-amp. Two fine
tuning methods have been presented and compared, which are a threshold voltage fine tuning
and a node voltage fine tuning. The basic low-voltage methodology can be extended to achieve

low voltage operation in other analog as well as digital applications.
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CHAPTER 6. AN ACCURATE AND MATCHING-FREE Vg
EXTRACTOR USING A RATIO-INDEPENDENT SC SUBTRACTING
AMPLIFIER AND A DYNAMIC CURRENT MIRROR

6.1 Introduction

Numerous numerical techniques exist for accurately extracting device model parameters
from measured data [82],[11]. One example of such a technique is the MOS transistor threshold
voltage (V1) extraction using a linear regression on measurements of Ips at many Vigs values.
Such techniques are not well suited for real-time on-chip threshold voltage extraction.

Recently, several real-time V7 extraction methods based on circuit implementations have
been proposed for overcoming the above disadvantages [101],[103]-[106]. These methods are
very fast although the accuracy is degraded compared to that attainable by the numerical
methods. Most methods [103]-[105] require matched devices to extract Vo for one test device
of a fixed geometry. The resultant accuracy thus depends on the matching between two or
more devices. These methods are inefficient when extraction of Vp is required for many tran-
sistors with various geometries and particularly unsuitable for V extraction of small devices
since the matching of small-size transistors is poor. These methods also require other com-
ponent matching in their extraction circuits such as current mirror transistors and resistors.
Mismatches of these components further degrade the accuracy of the extracted Vr values. More-
over, the methods [103]-[105] are not applicable for transistors with different bias conditions,
i.e., nonzero substrate-to-source voltages (Vgs # 0) since they need a cascode configuration
of matched test-transistors with the same Vpgs of all the test-transistors which is not possible
due to their cascode configuration. In contrast to the methods discussed in [103]-[105], the
method discussed in [101] uses only one test device and thus does not require device matching,
Although the latter method is very simple, it produces relatively large errors (about 100mV)
due to the uncertainty of choosing the proper threshold current which is used to measure Vr.

In this chapter a matching-free V extraction scheme is presented which does not require
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Table 6.1: Feature comparison of Vp extraction schemes

Required number Reaui s Applicability | Applicability at
equired componen . .
Schemes of matched at different different substrate Comments
test-transistors that should be matched geometries bias conditions
. A Accurate but Not
Numerical [1) None None Efficient Yes suitable for real time
Wang [4] & i . Using a transistor
Johnson [3] 9 Current mirror trs Inefficient No array
. Using a transistor
Tsividis [5] 3 Current mirror trs Inefficient No strin
g
. 2 Resistor & R BICMOS
Alini [6] Current mirror trs Inefficient Yes implementation
i Simple but
Lee [7] None None Efficient Yes Poor accuracy
Dynamic
sed ..
Propo None None Efficient Yes implementation

any replica of the device under test and which is applicable to transistors with different geome-
tries and different substrate bias conditions. The proposed extraction circuit is implemented
in a matching-free way by using a ratio-independent switched-capacitor amplifier and a dy-
namic current mirror. Thus, the accuracy of the proposed scheme does not depend on the
test-transistor matching and other component matching in the extraction circuit. The features
of the proposed scheme is comparatively summarized in Table 6.1 with other extraction schemes

mentioned above.

6.2 Principle of the Matching-Free V1 Extractor

6.2.1 Basic Scheme

A conceptual schematic of the proposed Vr extraction scheme is depicted in Fig. 6.1.
Applying the outputs of a current mirror, Ip; (with S1 closed and S2 open) and Ip; (with S1
open and S2 closed), to a test transistor which operates in the saturation region and assuming

that the transistor has square-law characteristics, we obtain respectively

K(Vgs1 — VT)2
K(Vgsz - VT)2

(6.1)
(6.2)

I

ID21
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Figure 6.1: Conceptual schematic of the proposed Vr extraction scheme

where
Ips = nlp (6.3)
pCox W

and where Vgs; and Viggo are the corresponding gate-source voltages of the device under test
(DUT). Equation (6.1) and (6.2) have the same K and Vr because only one test transistor is
used as contrasted with other extraction schemes. Solving these equations, we readily obtain

the threshold voltage Vr
1

VT=\/1_1_1

(VnVas1 — Vasz) - (6.5)

Assume S1 and 52 are driven by a complimentary nonoverlapping clock. When 51 is closed,
Vgsi is sampled and multiplied by p. When S2 is closed, Vgg; is sampled and subtracted from
pVesi. The result is then multiplied by g. The output voltage V,,; of Fig. 6.1 is then

Vout = ¢(pVas1 — Vgsa2)- (6.6)

If we select

p=Vn, (6.7)
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Figure 6.2: Two switching schemes to obtain currents Ip and 4Ip

then it follows from (6.5) and (6.6) that
Vour = mVr, (6.8)

where

m = ¢(vn - 1). (6.9)

Thus, an integer multiple of V7 can be readily obtained by choosing an integer m.
The easiest way to obtain Vr is to choose n = 4 and m = 1 resultinginp=2and g=1

and thus,
Vout = 2Vas1 - Vags2 = Vr, (6.10)

where Vgs1 and Vgso are the gate-to-source voltages of the test-transistor when the drain
currents are Ip and 4Ip, respectively. Two variants of a switching schemes that can be used
to obtain currents Ip and 4Ip are depicted in Fig. 6.2.

The simple analog arithmetic operation, (2Vgs1 — Vasz), can be accurately implemented
using a switched-capacitor subtracting amplifier. These kinds of switched-capacitor circuits for
basic arithmetic operations are capable of providing high accuracy as indicated in [73]. Most

common implementations of the current mirror and the switched-capacitor amplifier require
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device and capacitor matching respectively although matching with the device under test is not
required. Since both the current mirror gain and the amplifier gain have been chosen to be
both small and integral, both blocks can be dynamically implemented without requiring any
matching of devices or capacitors. The implementation of the blocks will be discussed in the

following sections.

6.2.2 Model Error Consideration

As with most other extraction methods [103]-[106], the proposed V7 extraction scheme is
also based on the assumption that MOS transistors operating in the saturation region obey
the square-law. The characteristics of real MOS transistors, however, deviate from the square-
law due to the nonideal effects such as channel-length modulation and mobility degradation,
resulting in a discrepancy between the extracted Vr and a real V7.

Including these nonideal effects, the drain current can be more accurately modeled by

Ips = [ o ] [ 1 ] CoxW
14+8(Vgs — V)] LL(1 — AVps) 2

where A is the channel-length modulation parameter, 8 is the mobility degradation parameter,

(Vas — Vr)?, (6.11)

and u, is the zero-field mobility of carriers. The parameter A is inversely proportional to the
channel length and usually in the range of 0.004V~! (L>50um) to 0.3V~1 (for very short
channel) [73]. Mobility degradation is caused by the increase of carrier scattering from the
5;-5;0; interface as the normal channel electric field increases. The parameter 6 is inversely
proportional to the channel length and usually in the range of 0.001V~! to 0.25V ! [73].
Since the emphasis is on extracting Vr, the threshold voltage must also be discussed. It
should be noted that there are three differently defined threshold voltages as follows [107]:

V1o Zero-bias threshold voltage of a large device
Vry Including device size effects and terminal voltage effects
Von Including subthreshold current effects

Vro is the threshold voltage of a zero-biased very large device which is usually used as an
input model parameter for SPICE simulations. V7o can be extracted with high accuracy by
the extraction schemes based on the square-law since large-size MOS transistors relatively well
obey the law.

Vry is the effective threshold voltage where device size effects (short channel and narrow

width) and terminal voltage effects (Vs and Vpg) are taken into account. V7o is thus a special
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Figure 6.3: Illustration of the transition voltage Von and its difference from Vry

case of Vry. The effect of Vgs on the threshold voltage is the well-known body effect, where
Vry increases with |Vpg|. The threshold voltage Vry is reduced as the drain-to-source voltage
Vps increases, which is known as the Drain-Induced Barrier Lowering (DIBL) effect [108]. The
DIBL effect is not significant unless the channel length is too short. As the channel length is
reduced, the discrepancy between the extracted Vpry and a real Vg increases because the A
and @ effects become significant, thus increasing the deviation from the square-law.

Von is defined as the transition voltage between the weak inversion region and the strong
inversion region [107]. The weak inversion region of operation is characterized by the fast
surface states, NFS ( SPICE model parameter). When the gate-to-source voltage Vs reaches
the transition point Vou, the characteristic of the drain current Ipg changes from the square-
law to an exponential law as shown in Fig. 6.3. The figure also shows clearly the difference
between Vg and Vpon. The threshold voltage Vo can not be extracted using the extraction
schemes based on the square-law. In SPICE Vo is obtained by adding Vry to another term
which can be calculated using the parameter NFS extracted from measurements.

To investigate the influence of the model error due to the A and @ effects on the performance
of the proposed Vi scheme, equation (6.11) instead of the square-law equations (6.1) and (6.2)

is used to derive Vo n = 4 and m = 1. Neglecting the second order terms of A and/or 8, the
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resulting expression is

1
2Ves1 —Ves2 = Vr+ 5('\ — 0)Vez1Vera

1
Vot 70 = OV2s, (6.12)

where V.1 is the excess voltage Vgs1 — Vo when the drain current is Ip and V2 is the excess
voltage Vgss — Vr when the drain current is 4I5. The model error voltage due to the A and

effects is thus

1
VTerr = 5(’\ - B)Vezl VezZ

1
= (A -0V, (6.13)

Small excess voltages will help reducing the error voltage, which is an expected result
because the channel-length modulation and mobility degradation effects increase with Vpg
and Vggs, respectively, and the test device in our extractor is diode-connected to guarantee its
saturation-region operation, resulting in Vps = Vgs. It is interesting to note that the two
parameters in (6.13) are in a relation of canceling each other, and fortunately, both parameters
are inversely proportional to the channel length, Therefore, the variance of A — 6 and thus the
error voltage will not increase substantially with the channel length reduction. For example, if
the maximum difference value of the two parametersis 0.1V "1, if Vo = 0.8V, and if V33 = 0.4V,
then the model error voltage will be less than 0.5%.

The model error in the proposed extraction scheme has been simulated for two test de-
vices which have different geometries using SPICE Level 2 MOS models (VT0=0.924V). To
determine model error effects alone, no error associated with the current mirror or the analog
arithmetic block was assumed. The extracted V7,,, which has been calculated from simulated
Vasi (at Ip) and Vgs, (at 4Ip) is compared with the threshold voltage Vg (NFS=0) computed
by SPICE and listed in the SPICE output file. With the assumption that the Vry computed
by SPICE is the actual threshold voltage, the error voltage Vr.,, (Vr.,, — VrHy) is plotted in
Fig. 6.4(a) as a function of bias current Ip.

As expected, the error voltages for the long-channel device (W/L=200pum/40um) are
smaller at all Ip values than those for the short-channel device (W/L=20pm/4um). It can
be seen that the error increases with Ip since large Ip increases the excess voltage as shown
in Fig. 6.4(b), where the error voltages are plotted as a function of the excess voltage Vg2
(Vasz2 — Vra). The figure exhibits that the error variation of the proposed scheme due to the

excess voltage V.zo is comparable with the variation due to the device size. It can be also seen
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that the slope of the curves in Fig. 6.4 changes substantially at a small Ip or a small V2 that
corresponds to the transition point Von. Therefore, the bias current Ip should be selected
carefully such that the excess voltages Vez; and V.o are greater than the transition point but
not too big to maintain a small model error. It can be seen in Fig. 6.4(b) that if V. < 0.4V
than the error voltage due to the model error will be less than 5mV even with the short-channel
device (L=4pm).

The proposed scheme has also been compared with the linear regression (LR) method [82]
in Table 6.2. In the LR method, Ipg values are collected at 20 Vgg values using SPICE, so no
measurement error is assumed. For consistency in excess voltages, the Vgg values are selected
such that the highest sample value Vgsy, is Vgsa, and the lowest sample value Vgg; is Vgsi
as shown in Table 6.2. Since threshold voltages are functions of device terminal voltages, and
their variation increases as the device size decreases, the actual threshold voltage Vry of the
short-channel device (L=4um) computed by SPICE varies with Vgg that is equal to Vpg as
shown in the table. At Vgg = 1.066V, Vpy = 0.889V, while at Vgs = 1.525V, Vpry = 0.887V.
Thus, the Vpy variation is about 2mV when the Vgg change is 0.46V. This variation will be
significant for shorter-channel devices. The Vrp variation of the long-channel device (L=40pm)
is almost negligible. In the proposed scheme the variation in the threshold voltage is due to
the two different Vgg values, Vgs1 and Vgss, used to extract Vry, and in the LR method the

variation is due to the different Vgs values used to grab the Ip data. The average values

(Vru(Vas1) + Vru(Vgsz2))/2 for the proposed scheme
(Vra(Vest) + Vra(Vasn))/2  for the LR method

were used to calculate the error of extracted threshold voltages. It can be seen from the table

VTHav =

that the accuracy of the LR method is similar to that of the proposed scheme, and both methods

give large error when the samples are taken from large Vgs values.

6.3 Ratio-Independent SC Subtracting Amplifier

Because of their potential for high-precision monolithic fabrication, switched capacitor
(SC) circuits have been widely used for many applications such as filters, data converters, and
basic building blocks for analog signal processing. SC summing and/or subtracting amplifiers
are one of the most common high-precision analog arithmetic building blocks. However, SC
circuits still have some error sources associated with the components composing SC circuits
such as MOS switches, capacitors, and amplifiers. Nonideal factors limiting the performance of

SC circuits are as follows:
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Figure 6.4: Error voltage of the extracted voltage V.., from the actual threshold voltage
Vry computed by SPICE (a) as a function of the bias current Ip (b) as a
function of the excess voltage Vezo



Table 6.2: Accuracy comparison between the proposed scheme and the linear regression
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method
Testdevice  Number of Extracted Error
size (W/L)  samples Vosi / Vi Vasu/ VY Tt | Vrar-Vinw
20um 1.066V/0.888V  1.241V/0.888V | 0.8919V 3.43mV
, “am~ D
Linear 1.211V/0.888V  1.525V/0.887V | 0.8971V 9.58mV
Regression
Method [1] 200um 1.116V/0.921V  1.309V/0.921V | 0.9230V 2.03mV
: —_— 20
40um 1.275V/0.921V  1.623V/0.921V | 0.9281V 7.09mV
Testdevice Bias Curr. Extracted Error
size (W/L) I Vos1/ Vi Vas2/ Vm ext Viext-Vitav
20um 1.066V/0.888V 1.241V/0.888V | 08921V |  3.61mV
4um JuA
The 1.211V/0.888V 1.525V/0.887V | 0.8961V [  8.58mV
Proposed
Scheme 200um 1116V/0921V  1309V/0.921V | 09233V |  2.26mV
Tmm 10
1.275V/0.921V  1.623V/0.921V | 0.9275V 6.47TmV
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1. Parasitic capacitances

2. Nonzero offset voltage of op-amps
3. Finite dc gain of op-amps

4. Capacitor mismatches

5. Charge injection of MOS switches

Many circuit techniques and strategies have been proposed to overcome these nonideal
effects [109])-[121]. Most modern SC circuits use parasitic-insensitive structures [72, 109, 110]
with which the influence of parasitic capacitances can be significantly reduced. The error
due to op-amp offset voltages can also be readily reduced using various switching procedures,
which is an attractive feature inherent to SC circuits [82, 111, 112]. A commonly used offset
compensation scheme is to store the op-amp offset voltage on capacitors in one clock phase
and to subtract it in the subsequent signal processing clock phase. The technique is known as
auto-zeroing or correlated double sampling [82],[73].

In all SC circuits the performance depends on the accuracy of capacitor ratios not the
individual capacitor accuracy. Although the ratios can be realized with high accuracy in modern
technology, they still produce some error. The ratio error due to capacitor mismatches can,
however, be eliminated using the ratio-independent concept introduced by Lee [113] where
multiplication by integer N of the input voltage can be obtained independently of the capacitor
ratios at the expense of more clock phases with the required number of clock phases increasing
with N. Hence, the ratio-independent concept has been used primarily for high-accuracy but
low to medium speed applications such as high-resolution and low-cost ADCs [113]-[116].

Recently, Nagaraj [117],[118], Lason [119] and Haug [120] have proposed techniques to
reduce the error associated with the op-amp finite gain. In these techniques the finite gain
error is compensated during a main-operation clock phase using the finite gain error information
obtained from a preliminary operation during the previous clock phase. It has been shown that
with this scheme the effective gain of the op-amp is squared, and the phase error is also reduced.

The simple arithmetic (2Vgs1 — Vgs2) needed in our Vr extractor is realized using a SC cir-
cuit. Interestingly, the arithmetic, multiplication by two and subtraction, is also a key operation
in algorithmic or cyclic ADCs [113]-[116]. To implement the SC circuit in a matching-free way
and to relax the op-amp gain requirement, Lee’s ratio-independent concept and Nagaraj’s gain-
insensitive technique are employed in our SC subtracting amplifier. Now, all the nonidealities

except for the charge injection of MOS switches can be compensated.



175

With this approach the charge injection effect becomes the dominant factor limiting the
performance of the SC circuit. The charge injection mechanisms are quite complicated. To date,
the charge injection compensation schemes [131]-[136] can perform only partial compensation.
The charge injection problem deserves a more detailed discussion and will be addressed in a
separate section. In this section the operation principle of the proposed SC subtracting amplifier
is discussed, and the residual nonideal effects are studied through both theoretical analyses and
SWITCAP [122] simulations.

6.3.1 Principle of Operation

The schematic of the proposed ratio-independent SC subtracting amplifier is shown in
Fig. 6.5. The circuit performs the analog arithmetic (2Vigs1 —Vgs2) and operates in six nonover-
lapping clock phases ¢; to ¢¢. Since a single test device is used, Vgsy and Vs can not be
available at the same time. Thus, the input of the SC circuit, Vg is

Ve for ¢y and
o G ¢ ®4 (6.14)

Vasz for ¢2 and ¢3

The current mirror in Fig. 6.2 is dynamically implemented such that it can supply the test
device with Ip during ¢; and ¢4 and with 4Ip during ¢2 and ¢3. The capacitors C1 and C2
are used for main operations, and C3 and C4 are the corresponding auxiliary capacitors for
the preliminary operations required for compensation of the finite op-amp gain. C3 and C4 are
chosen such that C3/C4=C1/C2. Capacitor Cc is used to store the finite gain error voltage.

The step-by-step operation of the circuit is described in Fig. 6.6 with ideal equations for the
capacitor voltages. During phase ¢; the input signal Vgg; is sampled onto both the sampling
capacitors C1 and C3. During phase ¢ the charge corresponding to Vgs; — Vgss is transferred
onto C4 from C3. At this time the error voltage (ideally zero) at the inverting input terminal
of the op-amp which is caused by the finite gain and the offset voltage of the op-amp is stored
in Cc. The error voltage is denoted as V;(2) where the subscript denotes the node number and
the number inside the parenthesis denotes the phase. The error voltage V;(2) is subtracted
from V}(3) during ¢3 such that the virtual ground voltage level V;(3) becomes as small as
V1(3) — V1(2), while the main charge transfer is performed from C1 onto C2. The difference
voltage V4(3) — V4(2) will be very small. If the difference voltage is assumed zero, then the
amount of charge stored in C2 will be exactly C1(Vgs: — Vgs2)-

During ¢4 the input signal Vggs; is sampled again onto C1 and C3. During ¢s the charge

stored in C4 is transferred back onto C3. The error voltage associated with this operation is
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Figure 6.5: Schematic of the proposed ratio-independent SC subtracting amplifier and
clock sequence
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also stored in Cc. During the last clock phase ¢, the charge stored in C2 is transferred back
onto C1 and added to the charge stored already during ¢4. During this phase the virtual ground
voltage V5(6) also becomes as small as V;(6) — V;(5). Assume again V;(6) = V;(5), then the
amount of charge stored in C1 is C1(2Vgs; — Vgsz2), hence the output voltage is 2Vgs1 — Vase
independently of the capacitor ratios. In reality the difference voltages V;(3) — V3(2) and
V1(6) — V1(5), however, are not exactly zero because of the nonideal effects. In the following

the effects of the nonidealities on the error voltage are investigated analytically.

6.3.2 Sensitivity to Finite Op-amp Gain and Parasitic Capacitances

The error voltage associated with the finite op-amp gain and the parasitic capacitances at
internal nodes are analytically derived. To reduce complexity only two parasitic capacitances
Cp1 and Cpy at node (1) and (2) which are critical nodes are considered. It is assumed in this

analysis that the offset voltage of the op-amp is zero and

c3_c1
ca4 C2
There are two main charge transfer operations through the op-amp feedback loop during ¢3
and ¢g.
During phase ¢3 the voltage across C2 is given by

l1+az (Cl ay C3> az C3

(6.15)

02+1+aza

Vout(3) = V2(3) = [ ] (Vas1 — Vasz) (6.16)

14 ay B 1+ azx EZ
C1 1
= 'a—z-(VGsl - VGsz)l + a (617)
where
6 = a’z(y - 2) (6.18)
and
a = 1/A (Ais the op-amp gain) (6.19)
= 1+ % (6.20)
_ _C_'El)( C1+CC+C,,2>_&
v = (1+8) 1+ S50 2 (6.21)
_ Cn
2 = 1+ (6.22)

It can be seen that the gain error ¢; is inversely proportional to A2, and the effects of parasitic

capacitances Cy1 and Cp; are also divided by A2.
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During phase ¢¢ the output voltage is given by

Vout(6) = (2Vas1 ~ Vgs2) = Verr (6.23)
where
Verr = @*[y(z — 1)(Vas1 — Vasz) + 29 (2Vas1 — Vasa)] + e1(Vast — Vesz) (6.24)
and
d = 1+ C4+ gt;-i- Cn (6.25)
y = (1 + %) (1 y E24CctCp gc1+ C’”) - —g—% (6.26)

The final error voltage V., is also inversely proportional to A% where it has been shown in
(6.18) that € o 1/A2.

The derived equations were verified through SWITCAP simulations. One example that
shows the errors in extracting Vrpy due to a limited finite gain and the presence of parasitic

capacitances follows. With the following conditions:

Ves1 = 1.2V Vgso = 1.4V

Cl=C2=C3=C4=Cc
Cn _ G2 _
Yoiinirei i 0.1 (6.27)
A =100 (a=0.01),
the calculated output voltage is 0.99944V while the simulated one is 0.99946V. Since the ideal
output voltage (Vgs1 — Vgsz) is 1V, it can be seen that with even a very small op-amp gain of

100, the error voltage is as small as 0.05%.

6.3.3 Sensitivity to Capacitor Ratio Mismatches

In the previous analysis, capacitor matching as given in equation (6.15) is assumed. How-
ever, there will exist a small mismatch component between the two capacitor ratios, i.e., C3/C4
used at preliminary operation and C1/C2 used at main operation. This mismatch component
is a side effect of the technique employed for compensation of the finite gain error and will
slightly increase the error voltage. Effect of the capacitor ratio mismatch is now investigated.

The capacitances C1, C2, C3, and C4 can be defined as in [5] (see Chapter 3).

Ck = Cky + Ckpy + Ckpy  for k=1,2,3,4 (6.28)
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where the N subscript denotes the nominal value, the R1 subscript denotes a random component
that is process dependent but does not vary from capacitor to capacitor on a wafer, and the
R2 subscript denotes 2 random component that varies randomly from capacitor to capacitor
on a wafer. The nominal values are chosen such that Cly = C2y = C3y = C4p. Since the
random components including subscript R1 are all the same on a wafer, equation (6.28) can be

rewritten by
Ck=C+Ckpy fork=1,2,3,4 (6.29)

where C = Cly 4+ Clp1 = C2n + C2p1 = C3n + C3my = C4n 4+ C4py.
The capacitor ratio C1/C2 is then

c1 C+Clg; _ C(1+Clgy/C)
ce2 C+02}{2_C(1+C2R2/0)

Cle)( _C2R2)
(” c J\!"¢

- Clr: C2r2
Correspondingly,
c3, ., C3m _ Cim (6.31)
C4~ c c '
From (6.30) and (6.31), the ratio C3/C4 can be expressed as
C3 _ﬂ_0132—02R2+C4R2-—C3}22 (6 32)

C4~ C2 [
where the second term denotes the random mismatch component between C1/C2 and C3/C4.
By substituting (6.32) into (6.16), equation (6.17) should be modified as

C1 1
V2(3) — Vour(3) = E(VGSI - VGSz)m (6.33)
where ¢€; is given in (18) and
Clpa— C2pa+ C4pe — C3
e =~ a(z — y) L F2 R2 . R2 R2 (6.34)

The error e, associated with the capacitor ratio mismatch is very small because the mismatch
component is divided by the op-amp gain A as can be seen in (6.34).
Assume Clpy, C2go, C3Ra, and C4py are independent random variables with the same

standard deviation o, then the standard deviation of e; becomes

_ lz—y| 20,

= (6.35)

O
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If 2 1% tracking error, i.e., 0,/C = 0.01, is assumed, then with the conditions in (6.27) the
calculated o, is 0.26mV while the calculated deterministic gain error ¢; is 0.41mV. The error
due to the capacitor ratio mismatch is small even with a small op-amp gain of 100. However, €2
can be larger than ¢; when the op-amp gain is large because €z & 1/4 while €; &« 1/A2%. During

¢e the modified final error voltage is

Verr = a2y (z — 1)(Vas1 — Vasz2) + 2'9'(2Vas1 — Vasz2)] + (a1 + €)(Vas1 — Ves2)  (6.36)

6.3.4 Sensitivity to the Op-amp Offset Voltage

With the input Vg grounded the error voltages due to the op-amp offset during ¢3 and ¢

are approximately given by

Voul3) = Va(3) = aly=2) (1+52) Vos (6.37)
Vout(6) [ (2 + gs) +(y—2) (1 + gf) gﬂ Vos (6.38)

where Vpog is the op-amp offset voltage. It can be seen that the circuit is also relatively
insensitive to the op-amp offset voltage. With the conditions in (6.27), Voyu:(6) = 0.0985Vps,
where the op-amp gain is only 100. If A = 1000 and Vos=10mV, then the error voltage due to
Vos will be less than 0.1mV.

6.3.5 Summary and SWITCAP Simulation Results

Taking into account all the nonideal effects except that due to charge injection, the output

voltage during ¢s is given in (6.23), and the final error voltage V., will be
Verr = €gain + €mis + €off (6.39)
where
€gain 7:115[{?/(1 - 1)+ z(y — 2)}(Vas1 — Vas2) + 9’ (2Vas: — Vas2)]  (6.40)
Temis = }‘|(Z - y)(Vas1 - VGS2)|2UC (6.41)

Cory A[ (2+55) +- )(H%) o] Vos (6.42)

where z, y, and z are given in (6.20)-(6.22), and 2’ and ¥’ in (6.25) and (6.26).
To examine which error term is dominant, the three error terms have been calculated based

on the conditions in (6.27) at various op-amp gains. In this calculation o, is used for €pis
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Figure 6.7: Calculated error voltages €gain, €mis, and €,y at various op-amp gains
(€mis = Oe,pyyy 0c/C = 0.05, and Vpg = 10mV)

with o./C = 0.05, and Vos = 10mV. The calculated results are shown in Fig. 6.7 where it can
be seen that the error due to the op-amp offset dominates the other error terms especially at
large op-amp gains.

The proposed SC subtracting amplifier has been simulated with SWITCAP. The simulated
output error at different op-amp gains with Vps as a parameter is shown in Fig. 6.8. The
conditions in (6.27) were used again except that in addition to the parasitic capacitances at
nodes (1) and (2), parasitic capacitances (10% as before) associated with all other internal nodes
are also considered. It is seen that with op-amp gains greater than 500, the error becomes less
than 0.05% even with Vpg = —20mV. In this simulation the capacitor ratio mismatch was not
considered. Another simulation result is shown in Fig. 6.9 where A = 500 and Vps = —20mV
are used. This simulation was done to determine an optimum size of the error storage capacitor
Cc. It can be seen that the optimum value of Cc is around 2C (C=C1=C2=C3=C4). With
Cc<C, the error is relatively big compared to that with Cc>C.
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Figure 6.8: SWITCAP simulated output error voltage V,,, at various op-amp gains with
Vos as a parameter
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Figure 6.9: SWITCAP simulated output error voltage V., with different sizes of the error
storage capacitor Cc (C=C1=C2=C3=C4, A = 500, and Vpg = —20mV
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6.4 Charge Injection Reduction Schemes

In the previous section it has been demonstrated analytically and through simulations
that the proposed SC subtracting amplifier is very accurate due to its insensitivity to the
nonideal error sources such as parasitic capacitances, capacitor or capacitor ratio mismatches,
finite op-amp gains, and op-amp offset voltages. Now, the remaining error source is the charge
injection of the MOS switches. The SC amplifier has been simulated with SPICE using a charge
controlled MOS model (XQC=0.5) [107],{137], where charge conservation is guaranteed by the
method of computing terminal currents. The simulated error voltage due to charge injection
effects is around 10mV. This is somewhat large and thus, should also be compensated to keep
the accuracy high.

The charge injection problem has received considerable attention [123]-[130] because it has
become the most important factor limiting the accuracy of switched capacitor (SC) and switched
current (SI) circuits. Several compensation schemes have been reported in the literature [131]-
[136]. In this section, the charge injection phenomenon.a.nd its effects are briefly reviewed, and

then, a strategy to reduce the charge injection effects in the proposed SC amplifier is proposed.

6.4.1 Charge Injection Phenomenon

When a MOS transistor switch is turned off, the charge stored in its channel is injected into
the surrounding nodes, i.e., the source, the drain , and the substrate nodes. This phenomenon is
commonly known as the charge injection effect. The effect produced by the charge flowing into
the substrate is called charge pumping [130]). The charge pumping effect becomes important
when the gate voltage falls very quickly. No significant charge flow has been experimentally
observed for switch-off fall times of greater than 5ns [123).

In addition to the channel charge, the charge associated with the feedthrough effect of the
gate-to-diffusion overlap capacitance is also injected into the surrounding nodes. The turn-off
of a MOS switch consists of two phases as shown in Fig. 6.10. During the first phase, the gate-
to-source voltage is higher than the threshold voltage, and thus, both the channel charge and
the charge associated with the overlap capacitors are injected. When the gate voltage reaches
the threshold voltage, i.e., Vg = Vs+ Vr, the conduction channel disappears, and the transistor
enters the second phase of turnoff. During this phase only the charge of the overlap capacitors
is injected until the gate voltage reaches Vgr,.

The total charge released during the switching off can be expressed as

Qr = Cr(Von — Vs — V1) 4 (Covs + Cova)(VT + Vs = ViL) (6.43)
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Figure 6.10: Two phases of the MOS switch turnoff

where C,,; and C,yq are the overlap capacitances, Vr is the threshold voltage, and Cr is the

total gate capacitance given by
CT = Co:z:WeffLeff + Coua + Covd (644)

The first term of (6.43) is the charge releaséd during the first phase and the second term is the
charge released during the second phase.

The released charge consists of signal dependent terms and signal independent terms.
Since the threshold voltage is a nonlinear function of the signal Vg, the magnitude of the charge
injected during switching off is also a nonlinear function of the signal. However, if the threshold

voltage is assumed to depend linearly on the signal Vg as in [124], according to
Vr = Vro + noVs (6.45)

then equation (6.43) can be rewritten as

{(Cous + Couvd — C1)(1 + n0)}Vs + {Cr(Var — V1o) + (Covs + Covd)(Vro — VeL)}
= anin + Qoffaet (6.46)

Qr

The first component 4y, causes a gain error since it linearly depends on the signal. The second
term Qo fse: is independent of the signal and thus cause an offset error. If the assumption of
(6.45) is not proper, than there will be nonlinear signal dependent terms which will be a source

of distortion.
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Figure 6.11: Simple sample-and-hold circuits used as test circuits for understanding the
effects of charge injection

6.4.2 Effects of Charge Injection

To understand the effects of charge injection the simple sample-and-hold (S/H) circuits
shown in Fig. 6.11 have been investigated analytically and experimentally by many researchers

[123]-[129]. Their works indicate that the error voltages due to the charge injection are affected
by the following factors:

1. Switch turnoff speed

2. Node impedances (Cs, CL, and Rg)
3. Signal voltage level (Vs)

4. Switch transistor size (L and W)

5. Substrate voltage (Vg)

In the fast switching off conditions, the transistor conduction channel disappears very
quickly, and almost equipartition of the channel charge is made independently of the node
impedances. Thus, the percentage of charge injected into the data-holding node approaches to
50%. In slow switching off conditions, there is enough time to make the final voltages at both
sides equal. This allows the majority of channel charge to flow out through the low impedance

node. Since source resistance Rg offers a leakage path for the channel charge during the switch
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turn-off period, a small source resistance reduces the amount of charge injected into the data-
holding node. The above statements have been demonstrated experimentally and analytically
in [123)-[126).

The gate dimension parameters L and W have an important effect on the amount of the
injection charge. If the gate area is increased, the total amount of charge stored in the device
is increased, as is the charge injection error voltage. It has been shown experimentally [127)
and analytically [126] that the charge injection error voltage has a linear dependence on device
dimensions. Theoretically, this can be attributed to the linear dependence of the inversion
channel charge on the gate area. From this it can be recommended that a minimum-sized
switch be used.

The magnitude of the signal Vs affects the amount of charge stored on the gate through
the gate-to-source voltage. It also affects the amount of charge stored in the bulk through the
source-to-substrate voltage. Linear dependence of the charge injection error voltage on Vg has
been observed experimentally in a wide range of Vg [127], where the nonlinear body effect is
not significant. This can validate equation (6.45). The substrate voltage Vp also has an effect
on the amount of charge stored in the device. However, Vg only contributes via the nonlinear
body effect. Thus the change in the charge injection error voltage with Vg is less significant
than with Vs.

6.4.3 Charge Injection Compensation Schemes
The following schemes have been used to compensate the error due to charge injection.
1. Minimum-sized switches and/or vlarge-sized storage capacitors
2, Half-sized dummy switches or specially designed dummy switches

3. Dummy capacitors

4., CMOS switches
5. Fully differential structure

6. Scheduling of the timing control sequence

The above techniques or their combination have been employed for many applications. The
researchers, used technique numbers, and their applications are summarized in Table 6.3.
A simple approach to reduction of the charge injection error is to use minimum-sized

switches and/or large-sized capacitors. However, this approach leads to the decreased circuit
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Table 6.3: Summary of commonly used charge injection compensation schemes and their
application area

l Researchers || Technique Numbers | Applications |
Chin [115], Poujois [133], Coln [86] 1 A/D, Amplifiers
Suarez, Gray, and Hodges [132] 2 Charge Redistribution A/D
Li, Chin, Gray, and Castello [114] 5&6 Algorithmic A/D
Bienstman and deMan [134] 2&3 D/A Converter
Yen and Gray [131] 3&5 SC Amplifier
Ogawa [135] and Watanabe [136] 6 SC Amplifier, S/H Circuit

operating speed. The scheme using dummy capacitors along with dummy switches to assure
by symmetry that exactly half the channel charge flow into the storage capacitor has limited
performance due to the source impedance [134]. Fully differential structure can do a first-order
cancellation of the charge injection offset. The gain error term of the charge injection, however,
can not be compensated by this structure [114],[131]. The scheme scheduling the timing control
signal can effectively compensate the offset error only [135] or the gain error only [114]. In
CMOS switches controlled by complementary clock signals, the two types of charge released
may partially compensate each other. This scheme is not efficient since it depends on the input
signal and the timing skew of the two complementary clocks, and since no real matching exists
between PMOS and NMOS [124].

The technique using half-sized dummy switches may provide perfect compensation if the
impedances of both sizes of the switch are identical or if the switching off time is in the order
of the intrinsic carrier transit time of the switch [123]. For the above two cases equipartition
of the channel charge is possible, thus compensation by the dummy switches is guaranteed
even for unsymmetrical source and drain impedances if perfect matching exists between the
main switches and the dummy switches. For more practical switching off time, the switch will
be temporarily conductive, and an equalization of the injected charges may occur. Therefore,
no perfect equipartition of the channel charge occurs and half-sized dummy switches can not
fully compensate for the charge injection error. More sophisticated rules can be used for the
dummy switch design [123]. In any case the unavoidable mismatch and the uncertainty of other

parameters limit the achievable compensation accuracy.
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6.4.4 Charge Injection Reduction Strategy for the Proposed SC Amplifier

As can be seen in the previous discussion, there does not exist any single scheme that can
provide full compensation and can be applicable for all situations. Thus, it may be desirable
to use a combination of several schemes. It is important to select the schemes that are most
suitable for the circuit to be compensated and to apply them intelligently. For the proposed
circuit, several schemes are incorporated to obtain a charge injection error voltage less than
1mV.

Since the operating speed is not critical in our circuit, small-sized switches (W/L=4pm/2um)
are used to reduce the amount of charge to be taken care of. The capacitor values have
been selected such that C1=C2=C3=C4=4pF and Cc=8pF. Very large-sized capacitors can
be used to reduce the error voltages due to injected charge, but this will increase the required
area significantly and also reduce the operating speed. If Vgyg=5V, VgL=0V, Vs=1V, and
W /L=4um/2pm, then the total charge released during the switching off is about 26.7fC which
was calculated from equation (6.43). Assuming half the total charge is injected into the capaci-
tor (C=4pF'), the error voltage will be 3.34mV. To obtain the overall circuit error voltage of less
than 1mV, other compensation schemes are required. A fully differential structure is excluded
because it needs a much more complicated circuit and increased area, and it can compensate
the charge injection offset error only.

The scheme using half-sized dummy switches can be generally applied for any types of
SC circuits if equipartition of channel charge is possible. Thus, half-sized dummy switches are
used in our circuit along with a fast falling gate clock which ensures almost equipartition of
channel charge such that the dummy switches can compensate it. The gate voltage falling rate
should be selected carefully. If the falling rate is too fast, the charge pumping effects [130]
will be significant. If the falling rate is slow, then the deviation from the equipartition will
increase. A gate clock falling rate of 5V /5nsec has been selected because no significant charge
pumping effects was experimentally observed down to 5nsec in [123], and SPICE simulations
showed that with the switch-off fall time of 5nsec the deviation from 1:1 partition is less than
5% for most practical node impedance conditions. By using this the overall error voltage due
to charge injection is expected to be greatly reduced although no perfect equipartition of the
channel charge is possible, and the mismatches between the main and the dummy switches
degrade the compensation accuracy.

Without dummy switches the simulated charge injection error voltage was around 10mV
as mentioned before where the designed op-amp has a dc gain of 800. Charge injection corrupts

the signals sampled onto C1 and C3, or transferred onto C2 and C4. More seriously, due
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to the charge injected into nodes (1) and (2) (see Fig. 6.5) the information stored in Cc is
substantially corrupted when Cec is used for the main operations. Fig. 6.12 show the simulated
voltage difference between node (2) and (1), i.e., Vg, (V2 — V1), during ¢; to ¢g, where the
period of one clock phase is 5usec. The capacitor Cc stores the error voltages generated during
the preliminary periods ¢, and ¢4, and the information stored in Cc must be used without any
change during the corresponding main periods ¢4 and ¢, respectively. However, the simulated
results indicate about 2mV change in V¢, as shown in Fig. 6.12(a). The error voltage stored
in Cc during ¢, is —1.4mV, but this is increased to 0.7mV during ¢3. Thus, the corrupted
information is used for the main operations, resulting in a degraded accuracy.

A very small change in Vg, of about 0.1mV can be observed in Fig. 6.12(b) where half-sized
dummy switch compensation was used. It can be seen that the dummy switches compensate
the charge injected into node (1) and (2) and thus, greatly reduce the change of the information
stored in Cc. When Vgg1=1.4V and Vgg,=1.8V, the simulated overall output error voltage is
0.6mV which is a greatly reduced value compared with.10mV obtained without compensation.
This accuracy well satisfies our targeted accuracy of 1mV. The simulated op-amp output voltage
is shown in Fig. 6.13 where a 30mV offset voltage source is inserted at the noninverting input
terminal of the op-amp. In the figure the preliminary operations which are erroneous due to the
offset voltage and the finite op-amp gain, and the compensated main operations can be easily
distinguished. The accuracy can be degraded by the nonideal factors associated the dummy
switch compensation such as mismatches between the main and the dummy switches and clock

skews. These effects are investigated next.

6.4.5 Consideration of the Nonideal Effects Associated with Dummy-Switch
Compensation

Besides the simple S/H circuit in Fig. 6.11, another S/H structure which is widely used
in SC circuits consists of a floating sampling capacitor between two MOS switches as shown in
Fig. 6.14(a). This structure has been preferably used especially in stray-insensitive SC circuits
such as SC filters and SC arithmetic building blocks. The structure is also a basic element in our
SC subtracting amplifier as can be seen in Fig. 6.5. The dummy-switch compensated version
is shown in Fig. 6.14(b). The charge injection effects of this circuit can also be investigated
analytically. However its analysis will be much more complicated compared to the simple
circuits in Fig. 6.11 which were analyzed theoretically in [123]-[126]. Even for the simple

circuit, no closed-form solution exists for general cases. Thus, theoretical analysis of the circuit
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Figure 6.12: SPICE simulated voltage across the error storage capacitor Cc, V¢, (a) With-
out dummy-switch compensation (b) With dummy-switch compensation
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Figure 6.13: Simulated op-amp output voltage of the SC subtracting amplifier in Fig. 6.5
when Vgg1=1.4V, Vgg2=1.8V, Vos=30mV, and A=800

in Fig. 6.14 is avoided. Instead, SPICE is used to investigate the nonideal effects associated
with the dummy-switch compensation shown in Fig. 6.14(b).

In this simulations the following parameters were used: analog ground V4=2.5V, gate
high voltage V=5V, gatelow voltage Vg =0V, gate voltage falling time TF=5nsec, Rg=10kS?,
and Cg=1pF. Since the sampling capacitor is floating, the parasitic capacitors at both nodes
and their mismatch will affect the charge injection process. Simulated charge injection error
voltages Voerr, Veoerr = (VIN — Vag) — (V1 — V2), are depicted in Fig. 6.15(a) for the uncom-
pensated circuit of Fig. 6.14(a) and in Fig. 6.15(b) for the compensated circuit of Fig. 6.14(b)
as a function of Cp; — Cpz. From the simulated results it can be seen that the effect of the
parasitic capacitance mismatch on the charge injection error voltage is much larger for the un-
compensated circuit than for the compensated one. The half-sized dummy switch compensation
is still sensitive to the input signal Vin as shown in Fig. 6.15(b) where simulations were done
for four different input voltages from 1V to 2.5V. The input voltage range of 1.0V to 2.5V can
cover most NMOS test transistors which have different geometries and different substrate bias
conditions. ‘

It can be also seen that the sensitivity to input signals decreases as Cp) — Cp2 increases.

Fortunately, this kind of parasitic capacitance mismatch is natural because an integrated ca-
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Figure 6.14: (a) A S/H structure consisting of a floating capacitor between two MOS
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(b) for the compensated case of Fig. 6.14(b) (Vgerr = (VIN—Vac)-(V1-V2))
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pacitor (C) has a large parasitic capacitance (0.1C ~ 0.2C) associated with the bottom plate
and a small parasitic capacitance (0.01C ~ 0.05C) associated with the top plate. Thus, the
bottom plate, which is denoted with a thicker line in the figure, should be connected to node
(1), the input signal side. If the input signal is close to the analog ground, then the error volt-
age variation is small regardless of the parasitic capacitance mismatch. In Fig. 6.5 the bottom
plates are also denoted with thicker lines, and the signal levels associated with capacitors C2,
C4, and Cc are the analog ground or the op-amp output. The op-amp output differs from the
analog ground by only Vgg: — Vigss during ¢, and ¢3. The input resistance Rg has little effect
on the results because a fast falling gate clock is used. The effect of the input capacitance Cg
is also negligible unless it is too large.

The effect of size mismatch between the main and the dummy switches on the compensation
process has been simulated. The simulated results are shown in Fig. 6.16 where the parameter
of the horizontal axis is (Am — 244)/2A4, and A, and Ay denote the area of main switches
and the area of dummy switches, respectively. With 20% area mismatch, the variance is about
100pV when Viy = 2.5V. Fig. 6.17 shows the effects of clock skews. The effects of delayed
switching of the dummy switches is shown in Fig. 6.17(a} where the variance is less than 50puV
for Viy = 1V, and it becomes constant for long delay modes. Fig. 6.17(b) shows the effects
of the clock skew between the two main switches. These simulation results indicate that the

effects of the nonideal factors on the dummy-switch compensation process are not significant.

6.5 Dynamic Current Mirror

The current mirror block shown in Fig. 6.2 is implemented dynamically to supply accurate
currents Ip and 4Ip to test devices. The dynamic analog techniques utilize an inherently
attractive property of MOS transistors that analog information can be stored on the gate
capacitor since no gate current is required in MOS transistors. Recently, this dynamic concept
has been widely used to accurately implement analog circuits such as current mirrors [138]-[140],
data converters [141},[142], and switched current (SI) circuits and filters [144]-[147).

By applying the dynamic concept to current mirrors, accurate current mirroring is possible
without depending on the transistor matching. However, some by-products associated with the
dynamic technique newly occur such as charge injection effects of MOS switches, transient
effects when switching, leakage current in the sampling switches. To reduce the finite output

conductance effects of the current mirror, the self-biased stacked mirror concept proposed by
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Wegmann and Vittoz [138]-[140] is used in our circuit.

6.5.1 Principle of Operation

The schematic of the dynamic current mirror and the required clock phases are shown in
Fig. 6.18. To correlate the clock phases with those used for the SC subtracting amplifier, the

first switching scheme shown in Fig. 6.2(a) was selected for implementing the current mirror.

The dynamic current mirror is composed of six current copier cells proposed in [143}. Each
cell consists of a sampling switch Si,, (¢ = 1,2,... or 6), a storage capacitor Cj, and a PMOS
transistor. Switches S, and S;. for ¢ = 1,2,...,6, are used to periodically connect the cells
with the input Ip for refreshing the stored information and with the output for supplying the
mirrored currents. The stacked common-gate transistors which are employed to increase the
output impedance are connected such that one cell is always connected with node (1) to deliver
current I; (ideally Ip), four cells are always connected with node (2) to deliver current I
(ideally 4Ip), and remaining one cell is connected to the input bias current Ip for refreshing.

When switches S;, and S are closed to memorize the input current Ip, the sampling
switch S;, must be opened first as shown in the clock phase diagram in Fig. 6.18 in order not
to contaminate the stored information. Once S;, is open, the gate voltage is kept constant if
leakage current in the sampling switch is ignored such that the drain current remains equal
to Ip. When S;;, is opened, and ;. or Sy4 is closed, the memorized current is available at
the output. The transients occurred when S;, and §;. are switched can be a significant error
source for continuous-time applications as investigated in [138],[139]. In our circuit the transient
effects is not important because the currents are required for only specific time intervals, which
indicates that the dynamic current mirror is suitable for our Vr extractor.

Clock phases of the current mirror, Sj,, are correlated with clock phases of the SC sub-
tracting amplifier, ¢;, as mentioned before such that the current mirror can supply Ip during
¢1 and ¢4 and 4Ip during ¢, and @3 to the test device (see two switches connected to node
(1) and (2) in Fig. 6.18). In fact, the switches in the current mirror are PMOS transistors, and

thus the polarity should be inverted as follows:
¢i = Sia fori=1,2,...,6

The output Vg is directly connected to the input of the SC subtracting amplifier and to a

diode-connected test device.
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Figure 6.18: Schematic of dynamic current mirror and required clock phases
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6.5.2 Accuracy Simulations

The charge injection problem from the sampling switches is also compensated by the
same strategy as used in the SC subtracting amplifier. Half-sized PMOS switches are inserted
between the sampling switches and the storage capacitors. The switch gates are driven by fast
rising clocks. Since the leakage current problem is not important if a proper clock frequency
is used, the nonideal effects limiting performance of the current mirror have been taken care
of. The finite output conductance effects are reduced by using the stacked transistors, and the
transients effect is not a problem in our circuit as mentioned before.

The dynamic current mirror in Fig. 6.18 was simulated when node (1) and (2) were con-
nected with a NMOS transistor (W/L=20pm/4pum). The simulated output currents I and I,
are depicted in Fig. 6.19. The initial behaviors of the current copier cells to produce output
currents of ratio 1:4 can be observed until ¢ = 30usec. After the initial cycle, the current mirror
can supply the currents I; and Iy of which the ratio is ideally 1:4 to the test device. The
output current ratio accuracy is shown in Fig. 6.20 as a function of the input bias current Ip.
Since the ratio error for one Ip value varies slightly at different clock phases, the maximum
values are selected and shown on the figure. The ratio errors in the Ip range in interest are
less than 700 ppm which produces approximately 0.5mV error in the arithmetic operation of
2Ves1 — Vgs2. Therefore, along with the SC subtracting amplifier discussed in the previous

sections the dynamic current mirror can perform the proposed Vr extraction scheme accurately.

6.6 Conclusions

An accurate real-time V7 extraction scheme which does not need matched replica of the
device under test has been proposed. A ratio-independent and finite gain insensitive switched-
capacitor subtracting amplifier and a dynamic current mirror have been designed to perform the
proposed scheme accurately in a matching-free way. Model error associated with the proposed
scheme has been investigated and compared with the linear regression method. The nonideal
factors limiting the performance of the SC amplifier and the dynamic current mirror have been
thoroughly investigated and their effects have been compensated in design.

Extensive simulation results show the potential of the proposed Vr extractor in accuracy.
Taking into account unexpected process variations, the total error voltages associated with the
designed circuit are in a few millivolt range. This error is smaller compared with the model

error. To make the Vr extractor applicable to various transistors which has different geometries
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and different bias conditions and to achieve a high accuracy, the model error should be always
kept small. The model error can be reduced by using an adaptive biasing scheme such that the
excess voltage of test transistors are always kept small.

The scheme is applicable to various applications where many V7 measurements are re-
quired. For example, the scheme can be well applied for implementation of low-voltage floating-
gate MOSFET operational amplifiers presented in the previous chapter where Vr measurement

of many floating-gate MOSFETs with different geometries are essential for Vr tuning {3].
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CHAPTER 7. CONCLUSIONS

In this dissertation five topics are investigated which are concerned with theories and tech-
niques for high-precision linear integrated circuit design and implementation. Since each topic

has been already concluded, only brief summary are given in this chapter.

In Chapter 2, a digital tuning scheme was presented for digitally programmable/tunable
continuous-time filters. The tuning scheme consists of two steps, system identification (ID)
and adjustment. Among various continuous-time system ID methods two indirect methods
have been investigated. One is a time-domain approach where a discrete-time model is first
estimated from input-output samples, and then it is transformed into an equivalent continuous-
time model. The other is a frequency-domain approach where frequency response of the filter
are first measured by frequency response measurement algorithms from input-output samples,
and a continuous-time model is then estimated by s-domain system ID algorithms based on
the measured frequency response data. Very accurate domain transformation methods were
presented. It has been shown that transformed results by the complex LS s-to-z and z-to-s
methods are much more accurate than those by the well-known bilinear method. As a robust s-
domain system ID method, an iterative complex LS algorithm was presented. While it has been
demonstrated from extensive simulations that both approaches can be fairly well applicable to
the tuning scheme, the frequency-domain approach has been combined with an adjustment
algorithm to serve as the digital tuning scheme because of its applicability to high-frequency
applications with low-cost data acquisition circuits. Extensive simulations and experimental
results have demonstrated that the digital tuning scheme can be applicable with fairly good

accuracy to high-frequency and high-Q filters as well as to various filter functions.

In Chapter 3, the common-mode rejection ratio and the offset of two-stage CMOS op-
amps have been investigated. Equations representing their statistical characteristics have been
derived from which the distribution, mean, and variance of the CMRR and offset can be easily

obtained if the process parameter variations are given. It has been shown that the random
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common-mode gain as determined by the mismatch of paired devices is comparable to the de-
terministic common-mode gain. It has also been shown that the probability density function of
the CMRR is distributed similar to that of a Gaussian random variable, but the mean is finite
and the symmetry is skewed somewhat, as contrasted to the probability density function of the
offset voltage which has a Gaussian distribution with zero mean. The op-amp errors associated
with finite open-loop gains, finite CMRRs, and nonzero offset voltages have been analyzed. It
has been shown that a nonideal finite CMRR can actually reduce the op-amp errors caused by

a finite open-loop gain.

In Chapter 4 an automatic offset compensation scheme for CMOS operational amplifiers
was presented. The proposed offset reduction scheme is to use a programmable current mirror
instead of a conventional one as a load of the op-amp differential input stage for control of
the offset by adjusting the bias voltage of the programmable current mirror. By employing a
ping-pong structure, continuous-time operation is obtained while the offset is constantly com-
pensated which makes the scheme insensitive to time and temperature drift. The performance
of the proposed scheme has been experimentally investigated. The proposed circuit has been
fabricated using a 1.0-pm n-well CMOS process. The measured offset voltages of the test cir-
cuits are less than 400pV in magnitude. The resolution can be improved by increasing the
number of bits of the digital-to-analog converter and using a unipolar compensation scheme.
It has been experimentally shown that the transient effects associated with the ping-pong op-
eration are not problematic. Several methods have also been proposed to further reduce the

transient effects.

In Chapter 5, a threshold voltage tunable op-amp structure that can be operated with a
very low power supply has been presented. Floating gate MOS transistors have been employed
as the basic op-amp circuit elements. By reducing the threshold voltages of the floating gate
MOS transistors, the op-amp circuit can operate with a very low power supply. Detailed circuit
implementation methods have been discussed. Good matching can also be achieved by tuning
the threshold voltages. A two-step threshold voltage tuning scheme has been presented. Its
functionality has been demonstrated through simulations. The basic low-voltage methodology
can be extended to other analog circuits as well as digital applications. Thus, implementation,
characterization, and extension of the proposed low-voltage scheme can be a good future re-

search topic.
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An accurate threshold voltage extraction scheme for MOS transistors has been presented
in Chapter 6. The proposed scheme differs from conventional methods in that it does not need
matched replica of the transistor under test and thus, can be applied more easily and accu-
rately than any others to real-time on-chip applications where threshold voltage measurement
are required for many transistors with various geometries and bias conditions. The proposed
circuit has been designed in a matching-free way using a ratio-independent switched-capacitor
subtracting amplifier and a dynamic current mirror. Nonideal effects associated with these
circuits have been thoroughly investigated. Simulation results have shown that the error asso-
ciated with the designed Vr extraction circuit is in a few millivolt range. The scheme can also
be well applied to the low-voltage circuits presented in Chapter 5 where Vr measurement of

many floating-gate MOS transistors with different geometries are essential for Vr tuning,.
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