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CHAPTER 1. INTRODUCTION 

As the title indicates, this dissertation contains multiple topics and can be classified into 

two parts in a large way or five topics in a detailed way. The first part is concerned with a 

digital tuning scheme for digitally programmable integrated continuous-time filters [4],[8]-[10]. 

The second part includes four topics: 

• Nonideality consideration for high precision amplifiers - Analysis of random common-

mode rejection ratio [5],[7]. 

• An automatic offset compensation scheme with ping-pong control for CMOS operational 

amplifiers [2],[6]. 

• Very low voltage circuits and operational amplifiers using floating gate MOS transistors 

[3]. 

• An accurate and matching-free VT extractor using a ratio-independent SC subtracting 

amplifier and a dynamic current mirror [1]. 

which can be grouped under the name of techniques for high-precision monolithic linear circuit 

design and implementation. 

Since the five topics are not directly related to each other, each topic is presented in a 

separate chapter, and each chapter has a full organization including introduction, main body, 

and conclusion. Actually, these topics are based on the journal or conference papers which 

have been already published or are to be published. Although the topics are not directly 

connected with each other, they can be correlated in that they are all concerned with theories 

and techniques for high-precision linear circuit design and implementation. 

To obtain high-precision linear integrated circuits, the causes degrading their accuracy 

must be well understood, and appropriate measures should be taken to compensate for them. 

These are what the five topics are concerned with. In the first topic, continuous-time filters 

are digitally tuned for high-precision continuous-time filtering. This is one of the attempts to 

digitally solve the problems such as process variations and parasitic effects which are inherent 
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to monolithic linear circuits and degrade their performance by deviating the fabricated circuits 

from desired circuits. To obtain high-precision linear integrated circuits, it is required that 

op-amps which are the most fundamental circuits be implemented with high accuracy. Thus, 

in the second topic, the nonidealities associated with op-amps are analyzed. The analyses 

include random CMRR and offset and their statistical characteristics which will be of much 

help to obtaining high-precision integrated op-amps. In the third topic, op-amp offset voltages 

are automatically compensated by digital means. The offset is one of the important obstacles 

pulling op-amps out of high-precision, and thus must be compensated for high-precision appli

cations. With increased low-voltage circuit applications, low-voltage as well as high-precision 

linear integrated circuits become essential. In the fourth topic a promising scheme to obtain 

high-precision linear circuits that can be operated with a very low power supply is proposed. Fi

nally, a high-precision threshold voltage extraction scheme applicable to many real-time on-chip 

applications is discussed. The threshold voltage extractor is also required for the low-voltage 

circuit implementation. 

Chapter 2 is concerned with a digital tuning scheme. For high-precision monolithic fil

tering, a continuous-time filter must be tuned after fabrication because of large component 

variations and undesired parasitic effects. This problem has motivated the introduction of 

many tuning techniques. In this chapter, as a new promising high-precision tuning technique, 

a digital tuning scheme is presented for digitally programmable/tunable continuous-time fil

ters which have many broadband applications where accuracy as well as reconfigurability to 

various filter functions in a wide range of frequency are crucial for the system. The tuning 

scheme consists of two steps, system identification (ID) and adjustment. Various methods for 

continuous-time filter identification are investigated on the basis of accuracy and efficiency from 

both time requirements and silicon implementation viewpoints. An adjustment tuning algo

rithm is presented which uses the system ID results to estimate process dependent parameters 

and then to calculate filter control parameters for adjustment. Extensive Monte-Carlo based 

simulation results and some experimental results are also presented to evaluate the performance 

of the digital tuning scheme. Finally, the first statistical characterization scheme for rigorously 

assessing the performance of any tuning algorithm is introduced. 

In Chapter 3, nonideal factors which play a key role in performance and yield in high-

precision applications of operational amplifiers are rigorously investigated. Of necessity, the 

combined effects of both deterministic and statistical parameters must be incorporated. The 

statistical characteristics of the common-mode rejection ratio and the offset of two-stage CMOS 

op-amps are investigated. The op-amp errors associated with finite open-loop gains, finite 
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CMRRs, and nonzero offset voltages are compositely analyzed. 

In many op-amp applications, offset cancellation or reduction is critical because an ampli

fier input offset voltage limits the capability of the system. An automatic offset compensation 

scheme for CMOS operational amplifiers is presented in Chapter 4. Offset is reduced by dig

itally adjusting the bias voltage of a programmable current mirror which is used as the load 

of the differential input stage. A 100% operating duty cycle is obtained by using a ping-pong 

structure. The offset compensation scheme is inherently time and temperature stable since the 

offset compensation is periodically performed with the ping-pong control. The proposed circuit 

has been fabricated using a 1.0-)um n-well CMOS process. The measured offset voltages of the 

test circuits are less than 400/iV in magnitude. 

With emergence of an increasing number of battery-operated applications, low voltage 

circuit techniques have moved into the limelight. Following the trend, a threshold voltage 

tunable op-amp structure that can be operated with a very low power supply (e.g. 0.5V) is 

presented in Chapter 5. Since the threshold voltage of a floating gate transistor can be precisely 

controlled, use of floating gate MOS transistors as the basic circuit element makes it possible 

to obtain much lower voltage circuits than achievable by other approaches using device size 

scaling techniques where the threshold voltage variation is significantly increased as the device 

size is decreased. Good matching can also be achieved by tuning the threshold voltages. A 

two-step threshold voltage tuning scheme is presented. Due to the long term charge retention 

property of the floating gate transistors, the threshold voltage tuning does not have to be done 

frequently, and thus, near continuous-time operation of the op-amp can be achieved. 

In Chapter 6, an accurate threshold voltage extraction scheme for MOS transistors is 

presented. In contrast to alternative methods recently reported in the literature, the proposed 

scheme does not need a matched replica of the transistor under test. Moreover, the scheme can 

be accurately implemented in a matching-free way. Thus, the scheme has potential of extracting 

threshold voltages much accurately than other techniques of which the performances depend 

upon the test device matching as well as other component matching in their extraction circuits. 

The proposed scheme is implemented using a ratio-independent switched-capacitor subtracting 

amplifier and a dynamic current mirror. Nonideal effects associated with these circuits are 

thoroughly investigated. 
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CHAPTER 2. A DIGITAL TUNING SCHEME FOR DIGITALLY 

PROGRAMMABLE INTEGRATED CONTINUOUS-TIME FILTERS 

2.1 Introduction 

While digital filters have many advantages due to their inherent characteristics such as 

signal processing in digital form and easiness in design, analysis, and testing automation, 

continuous-time (analog) filters may offer advantages over digital filters in many respects. Inte

grated continuous-time filters require orders of magnitude less die area than comparable digital 

filters and do not need any domain transformation (continuous-time to discrete-time or vice 

versa) which is essential for digital filtering when the signal to be processed is in continuous-time 

form. Many problems which are involved in the peripheral parts required for the transforma

tion such as A/D and D/A converters, anti-aliasing filters and reconstruction circuits are main 

drawbacks in digital filtering [19]. The most attractive feature of the pure continuous-time 

filtering is the capability of operating at higher frequencies than its sampled-data counterparts 

such as switched-capacitor, switched-current, and digital filters [11]-[15]. These reasons make 

the continuous-time filtering preferable in certain applications. 

In spite of the advantages of continuous-time filters, their use has been limited because of 

the significant discrepancy between the designed and fabricated filter characteristics due to large 

component tolerances and parasitics. Therefore, tuning is essential, and it is the most serious 

and challenging problem which must be overcome to obtain high-performance continuous-time 

filtering. In the past many kinds of techniques have been developed for tuning of various 

continuous-time filters [13]-[37]. These can be categorized as functional methods, deterministic 

methods with automatic tuning algorithms, and automatic on-chip methods with analog tuning 

loops associated with master-slave techniques. 

Functional Tuning: In functional tuning components are adjusted on a one-by-one basis 

while an excitation is applied to the circuit and measurements are made. Although functional 
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tuning may be efficient in some cases, it is generally precluded because it is inherently slow and 

depends on unclear heuristics. As early versions of tuning techniques, the functional methods 

and the deterministic methods have been applied to mainly hybrid integrated active RC filters 

for low-frequency filtering applications. 

Deterministic Tuning; In deterministic tuning [26]-[33] the necessary adjustments are 

analytically calculated from a set of component measurements. Many deterministic tuning 

algorithms have been proposed, and some of them have been successfully implemented and 

used for analog filter products. Three representative deterministic tuning algorithms which 

have been compared in [26], [27], are a leaat squares method [31], a sequential tuning algorithm 

[28],[29], and a large-change-sensitivity method [30]. In these methods only a subset of the 

components, usually resistors, are adjusted in an irreversible and increasing manner based 

upon the measurements of the remaining components, usually capacitors and resistors. The 

methods require solving complex nonlinear equations derived from circuit analysis at a set of 

discrete frequency points. Therefore, a resistor and frequency selection procedure is essential 

in these methods and should be handled carefully because the performance of these algorithms 

is directly related to these choices. 

The adjustment method of deterministic tuning is trimming the circuit resistors by phys

ical or chemical methods, so the trimming errors are unavoidable. Sometimes the required 

resistor trim tolerances are so tight that satisfactory results can not be obtained by the state of 

the art of the available trimming technology. The trimming error, of course, can be minimized 

if the closed-loop method of the sequential tuning algorithm is used [28]. Drawbacks of these 

methods are that much task is required for deriving the required expressions and a sophisticated 

on-line computer with a large software support system is also required for its implementation. 

In addition these algorithms have been applied only at low frequencies, and the tunability has 

not been considered at higher frequencies where parasitics have much more dominant effects on 

the filter performance than component tolerances. These algorithms have only limited success 

at compensating for component variations, and thus, have been restrained to tuning circuits 

already close to the desired circuits. 

Analog Loop Tuning: The most popular approaches to tuning of high-frequency continuous-

time filters have been to use on-chip analog tuning loops such as phase locked loops (PLL) and 

vector locked loops (VLL) based upon the master-slave concept [13]-[23]. These methods have 

been applied to high-frequency OTA-C continuous-time filter implementations, and good results 
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have been achieved. Most early versions of these techniques used one single reference frequency 

only for pole resonance frequency control, and Q-control was not considered necessary under 

the assumption that the quality factor has sufficient accuracy by component ratios. For highly 

selective filters, this assumption is not correct any more because parasitic effects produce sig

nificant errors in the effective quality factor and thus the gain at the resonance frequency. To 

overcome this problem more complex tuning schemes have been reported [13]-[17] which con

trol two objectives, quality factor control as well as frequency control. It has been shown that 

controlling more objectives results in better performance at the expense of more complexity 

of tuning circuits. The primary limitation of these kinds of methods using the master-slave 

scheme is the mismatch errors between reference circuits and main filters and other undesired 

effects associated with the large extra analog tuning circuits. 

Digital Tuning: Although attention has been concentrated on high-frequency filtering 

as a promising application area of the continuous-time filters, many broadband continuous-

time filtering applications such as telephony and radio also exist where accuracy as well as 

reconfigurability to diflferent types of filter functions in a wide range of frequency are required 

for the system [39]. For these kinds of applications, digitally programmable and digitally tunable 

continuous-time filter architectures have been developed [38]-[43]. This kind of reconfigurable 

filter should be served by more general tuning schemes that can perform tuning of various filter 

transfer functions. A feasible way to do that is opening a tuning host or employing a tuning 

microprocessor to perform a well developed software tuning algorithm. This tuning scheme is 

referred to as digital tuning. 

In the digital tuning, the actual filter performance is measured, and the measured data in 

digital form are transferred to a computer/microprocessor that performs a tuning algorithm to 

digitally control the continuous-time filter. This technique does not require component match

ing as in the master-slave scheme. Although the digital tuning also has some disadvantages that 

it requires an external tuning host computer/microprocessor and precision filter performance 

measurement circuitry and that the performance is limited by the quantization effects of the 

digital control mechanism and the accuracy of the performance measurement circuit, it has 

potential of high accuracy as well as applicability to high-Q and high-frequency applications if 

a good tuning algorithm is provided. 

The comparison of the tuning schemes mentioned above is summarized in Table 2.1. A 

few digital tuning schemes have been reported in [40],[41]. Their work has demonstrated the 
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Table 2.1: Comparative summary of the tuning schemes 

Functional Tuning Deterministic Tuning Analog Loop Tuning Digital Tuning 

Main Idea Heuristics Circuit Analysis Master-Slave 
Scheme 

System ID 
Adjustment 

Adjustment 
Method Laser Trimming Laser Trimming Analog Control Digital Control 

Required 
Measurement Frequency Responses A Set of Components No Frequency Responses 

Excitation Yes No Yes Yes 

Frequency 
Range Low Low High High 

Charac-
tenistics 

- Efifïcient when 
niters are simple 

- Inherently slow 

- Formidable task to 
derive the required 
expressions 

- Required resistor 
trim tolerance are 
tight 

- Large software 
support system 

- Require accurate 
system model 

- Applicable at only 
low frequency range 

- Suffer from aging 

- On-chip automatic 
tuning 

- Require large extra 
analog tuning 
circuits 

- Mismatch errors 
between master and 
slave filters 

- Signal interference 
- Limited accuracy 

- Simplified by 
decomposing it into 
two phases 

- Require software 
support system 

- Require digital 
contol circuits and 
measurement 
circuits 

- Potential of high 
accuracy 

applicability of the digital tuning methods to high-precision and high-frequency filter applica

tions. However, their tuning schemes were developed for only 2nd-order bandpass filters, and 

extensions to versatile filter types or to higher-order filter functions have not been considered. 

The objective of this research is thus to develop a more general digital tuning scheme for digi

tally controllable continuous-times filters such that it can be well applicable to any type or any 

order filter functions. The whole tuning procedure is simplified by dividing it into two phases: 

system identification (ID) and adjustment. The transfer function of the filter to be tuned is 

first identified from input-output time-domain samples. Based upon the identified results, new 

filter control parameters are estimated to adjust the filter. This procedure is repeated until a 

tuned filter is obtained. 

Section 2.2 describes a general and simplified formulation of the digital tuning problem. 

In Section 2.3 the digitally programmable continuous-time filter structure [38, 39] is briefly 

reviewed which is the basic test structure for the proposed tuning algorithm. Nonidealities of 
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the filter structure which have strong effects on the tuning performance are also investigated. 

In Section 2.4, various continuous-time system ID methods are described. Two approaches 

are investigated. One is via the z-domain system ID followed by z-to-a transformation. The 

other is based on the a-domain system ID following frequency response measurements. An 

iterative complex least squares (ICLS) algorithm [9] which can be referred to as the a-domain 

counterpart of the z-domain generalized least squares (GLS) algorithm is proposed as a ro

bust a-domain system ID method. Very accurate domain transformation (a-to-z and z-to-a) 

methods based on complex LS algorithms are also proposed and compared with the well-known 

bilinear transformation method. Frequency response measurement algorithms required for the 

second approach are comparatively reviewed on the basis of accuracy and implementation cost 

[4]. Extensive simulations based on the Monte Carlo method are performed to investigate the 

performance of the continuous-time system ID methods. 

In Section 2.5, a tuning (adjustment) algorithm [8] related to the physical filter structure is 

introduced. The proposed tuning algorithm combined with the system ID method is extensively 

simulated to evaluate the whole digital tuning scheme. Yield calculation of the tuned filters 

is also performed to more clearly investigate the performance of the tuning scheme. Some 

experimental tuning results are presented in this section. Finally, conclusive remarks including 

the contribution of this research, limitations, and possible future works are given in Section 2.6. 

2.2 Tuning Problem Formulation 

The digital tuning procedure is partitioned into two phases: system identification, and 

adjustment as shown in Fig 2.1. The input-output samples of the actual continuous-time filter 

which has an unknown transfer function Ta(a) are collected by a performance measurement 

circuit. The input-output data are then fed to a system ID algorithm to estimate the parameters 

of a model r,(a). The estimated model parameters C, which is the coefficient vector of the 

identification model T,(a) is compared with the desired model parameters Cj which is the 

coefficient vector of the desired model Tj(a). Based on the comparison, new filter control 

parameters are calculated by an adjustment algorithm and then the physical filter components 

are adjusted by AG where G is the filter component vector. 

The initially implemented continuous-time filter response Ta{s) 

usually differs from the desired response T j ( s )  due to the component variations and parasitic 
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Input-Output Samples 
System ID 

Ti(s) 

Continuous-Time 
Filter Desired 

Response 

Td(s) 

Adjustment 

Figure 2.1: Block diagram of the digital tuning scheme 

effects. The actual filter response Ta{s) consists of two components and can be expressed, for 

convenience, as 

r.(5) = Tc(a)!Z^(a). 

where Tc{s) is modeled, controllable/programmable and capable of realizing the desired re

sponse. 

The order of Tc{s) is the same as that of Td{s). The Tp{s) is due to parasitics. The order of 

Tp{s) is unknown, so the order of the actual filter response Ta{s) is also unknown but will be 

greater than that of the desired response Td{s). In reality, Ta(s) can not be expressed as a simple 

multiplication of two independent terms Tc{s) and Tp{s) since they are usually correlated. If 

the coefficient vector Cc and the component vector G are defined by 

Cc — [OcO • • • ^cric ; ̂ cO • • • ^cmd 

G = [Ri . . .Rk,Ci . . .Cl]^, 

then the coefficient Cc is a function of G, 

Cc = /(G) (2.1) 

It is now obvious that the tuning problem is to control the controllable components of the 

component vector G such that 7^(g) approaches to Td{s). The whole tuning procedure is then 

as follows: 



www.manaraa.com

10 

1. Measure the time-domain input and output samples of the continuous-time filter to be 

tuned. 

2. Identify the actual filter with a system ID model Ti{s) using the measured data. 

3. Compare between the desired response Td{s) and the identified result T,(s) and determine 

the required ACc such that Ta(s)(« î<(5)) approaches to Td{s). 

4. Map ACc to the required AG and make component adjustment. 

5. Repeat the above steps until tuning is completed. 

It can be seen that the tuning performance will highly depend on the accuracy of the system 

ID. The system ID model T,(s) should have the same order as the desired response Td{s) to 

easily obtain the ACc and AG and thus to make the adjustment algorithm simple. Thus, the 

system ID must be robust in the presence of parasitics because the order of the system ID 

model is usually less than that of the actual filter to be identified. 

2.3 Digitally Programmable Continuous-Time Filter Architecture 

The digitally programmable continuous-time filter architecture [39] is shown in Fig. 2.2. 

This structure has been selected specifically as a basic test vehicle for investigating the per

formance of the digital tuning algorithm. The system consists of an analog bus, a digital bus, 

a local digital controller, a performance monitor and a number of digitally programmable bi

quadratic sections. The structure of each biquadratic block is shown in Fig. 2.3, which consists 

of 5 programmable operational transconductance amplifiers (OTA), two programmable capac

itor arrays, an analog buffer stage, and six analog configuration switches. More details of the 

architecture and characteristics of each elements can be found in [38]-[43]. 

The ideal transfer function of the programmable biquadratic block is given by 

Ir fn N .2 1 /•Sm4—flmsfiti) \ _ , / Smlffm3+Sm2Sm3B|B \ 
Vput _ \^hp)S I Û; + l" ÛIÛ7 ) 

(2.2) 
Vin + 

where the B variables can be 0 or 1 depending upon the switch settings. The pole frequency 

Wo and the quality factor Q of the biquad are given by 

9m29m3 f: 
~ V CeCr 

I9m29m3 / / 
" = i-c^cr'Kc;) 
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Figure 2.2: Digitally programmable continuous-time filter architecture 
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Figure 2.3: Biquadratic building block 
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The model for Tc{3) and Ti{s) should be 

Tcis) = Ti{s) = ^2 + 0)3 + 0° (2-3) 

which has only 4 degrees of freedom, instead of 5 in ordinary second order rational transfer 

functions. The coefficient vector and the component vector are then 

Cc = [flO) ^0) ^1] 

— [fftnl • • -ffmS) C'e, C7] 

The coefficients are given respectively by 

«1 = ^ (2.4) 

ao = (2.5) 

61 = g'n4 - (2.6) 
w 

J, _ Sml9m3 "f 9m29m^Bip 

These equations show that Cc is a function of G as in (2.1). From (2.4)-(2.7), it follows that 

we can get independent or sequential adjustment of the transfer function coefficients. 

Compared to conventional analog filters, the digitally programmable continuous-time filter 

structure has many advantages which are favorable to the filter adjustment. The digitally 

controllable structure provides more accuracy, flexibility, and simplicity for filter adjustments 

as follows. 

1. Since the operational transconductance amplifier (OTA) gains are programmed or ad

justed by digitally controlled voltages, more accurate adjustments can be possible than 

in the conventional analog filters where resistors are usually adjusted by laser trimming. 

The speed of digital adjustments is much faster than that by trimming. 

2. Digital tuning can be more flexible than the conventional deterministic tuning because 

in the digitally programmable continuous-time filter the OTAs can be adjusted to have 

any gains in a given range at any time, but in the conventional filters resistors can be 

adjusted only in an irreversible and increasing manner. 

3. Since the digitally programmable continuous-time filter consists of cascaded biquadratic 

blocks, the individual second-order sections of the filter can be separately tuned to adjust 

the whole filter, and the independent or sequential adjustability of the filter parameters 
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can make the computing procedures for the tuning corrections very simple not including 

any linearization procedures or matrix inversions as in the conventional deterministic 

tuning [26]-[33]. 

4. The digital tuning does not suffer from the mismatch errors which are the major draw

backs in the conventional analog loop tuning [13]-[23], because the digitally programmable 

continuous-time filter does not have any reference circuits which should be well matched 

with main filters. 

On the other hand, this structure also has some nonidealities which affects the tuning perfor

mance. The nonidealities associated with OTA-C integrators and their effects are discussed in 

the following subsection. 

2.3.1 Effects of Nonideal OTA-C Integrators 

A basic component consisting of the biquadratic blocks is the OTA-C integrator shown in 

Fig. 2.4(a). The ideal transfer function in (2.2) holds under the assumption that the integrators 

are ideal, and it has been derived using the ideal model shown in Fig. 2.4(b). The ideal integrator 

transfer function is 

rri  / \  ^out  SmojCL = 

_ 
5  

where Qmo is the dc transconductance gain of the OTA and is the unity-gain frequency given 

by 

wu = (2.8) 

The frequency responses of the ideal integrator is shown in Fig. 2.5(a). In reality each OTA has 

nonidealities such as parasitic poles and zeros associated with internal nodes and finite output 

impedance resulting in a finite dc gain of the OTA or the OTA-C integrator. 

The parasitic poles and zeros of an OTA can be modeled by a single pole (u>p) as follows. 

If an OTA with infinite output impedance has n parasitic poles and m parasitic zeros, then the 

transfer function of the OTA-C integrator can be written as 

Wu (1 + a/w^i)...(!-I-g/w^m) f2Q) 
6 (l + a/wpi)...(l + a/wp,) 

Since the parasitic poles and zeros are usually located at higher frequencies than the unity-gain 

frequency Wu, by assuming the frequency range of interest w << Wp(,W;,', equation (2.9) can be 
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Figure 2.4: OTA-C integrator models (a) Circuit diagram (b) Ideal model (c) Model in
cluding the finite output impedance (d) Model including both the effective 
parasitic pole and the finite output impedance 
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Figure 2.5: Frequency responses of (a) Ideal integrators (b) Nonideal integrators 
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approximated by 

Tinti^)  
^ 1 

a  (1 + S/U}pi) • • -(1 + 5/Wp„) ( l  -  s/Wj i )  " (1 — s/Uzm) 
Wu 1 

^ 1 + a (EILi - Z5:i 

Defirdng the effective parasitic pole Wp as 

the integrator transfer function and the OTA transconductance gain can be approximated by 

= T(îtÎh) 

where a;„ is as defined in (2.8). 

The effects of the effective parasitic pole on the integrator is the high frequency roll off 

of the gain response and the excess phase lag at the unity-gain frequency as can be seen from 

Fig. 2.5(b). This excess phase error causes the Q-enhancement effect as can be seen later. If we 

assume that all OTAs of the biquad have the same effective parasitic pole, then a more realistic 

transfer function for the biquad of Fig. 2.3 can be obtained by substituting (2.10) into the ideal 

model (2.2): 

+ 2ts^ + (1 + T2mi;&n3.)52 ^ 
^ - Ez ! m in 

rV + 2r53 + (1 + ri^)s2 + ^ 

where r = 1/wp, Bip = 0, and Bkp = Bbp = 1. A 4th or higher order transfer function is 

thus more appropriate for describing the biquad instead of the ideal 2nd-order function. This 

phenomenon is called the over-ordering effect. 

The over-ordering effect due to the parasitic poles and zeros can be explained in another 

way. By assuming <<1, for medium to high Q biquads, the actual pole frequency and 

quality factor can be characterized by [68] 

Wo. = Wo 

- 1-2UOTQ' 

Now, it can be easily seen that the effect of the parasitic poles and zeros on the biquad is the 

significant Q-enhancement. We define UoT as the over-ordering factor. Generally, the over-

ordering factor will be very small for low frequency applications because Wg is much less than 
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Wp(= 1/r) at low frequencies. In this case the over-ordering effects can be negligible, but at high 

frequencies the over-ordering effects will be substantial. If the effective parasitic pole is located 

at 10 times higher frequency than the pole frequency, i.e. the over-ordering factor uigT = 0.1, 

and the filter is designed with Q equal to or greater than 5, then it can be seen from (2.12) 

that the result is an oscillatory circuit. Therefore, predistortion techniques should be adapted 

to implement high-Q biquads. If we can estimate or guess the effective parasitic pole frequency, 

then we can use the following predistorted Q value at the initial implementation to prevent the 

filter from oscillation: 

Qdiat < ^ 
(1 + 2WoTeQ)' 

where is an estimated value. Since it is hard to estimate r accurately, the rule of thumb is 

to use an over-predistorted Q value. 

The model including the finite output impedance but assuming no parasitics in gm{s) is 

shown in Fig. 2.4(c) where Ro and Co are the output impedance and output capacitance of 

the OTA and CL is the integrating capacitance. Assuming CL» CO, the integrator transfer 

function is 

where Ao = g-moRo is the finite dc gain of the OTA and w» = gmoICi is the unity-gain frequency. 

The effects of the OTA finite dc gain on the integrator is the finite integrator dc gain (ideally 

infinity) and the phase lead at low frequencies as shown in Fig. 2.5(b). 

Using the nonideal integrator equation (2.13), the actual pole frequency and quality factor 

of the biquad are given by 

Qa ^ 
1 + 2Q/Ao 

It can be seen that the phase lead due to the finite dc gain causes Q-degradation and thus 

partially compensates for the Ç-enhancement effect due to the parasitic poles and zeros. 

Combining the parasitics and finite dc gain effects, the real integrator can be modeled 

as Fig. 2.4(d) where the effective parasitic pole Wp is represented by the internal parasitic 

capacitance Cp and resistance Rp. The transfer function of the integrator becomes 

Tintis)  ^  + 

{u>u/Ao s ) { l  +  s /u)p)  ^  ^  
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Using this, the actual quality factor can be readily approximated by 

n . 9. 
1 + 2(l/i4o Wor)Q 

and the actual pole frequency by ~ w. 

The Q-degradation effect due to the finite dc gain is usually negligible unless Ao is too small. 

Thus, the 4th-order rational function of (2.11) can be used to model the actual over-ordered 

biquad. However, if we use the 4th-order model for system ID, we wiU lose the independent or 

sequential adjustments of the transfer function coefficients because in our target architecture, 

there is no attempt to tune or cancel the parasitics themselves. A straightforward method is to 

then identify the over-ordered actual system with a low order model. The system ID methods 

presented in the next section make it possible to use a low order model for identifying the over-

ordered system with good accuracy. We can thus maintain near independence of adjustment of 

the transfer function coefficients even in the presence of significant parasitics. 

2.4 System Identification 

The problem of system ID can be referred to as the estimation of the system model 

parameters by observing the system input and output samples as shown in Fig. 2.6. Linear 

time-invariant continuous-time system can be modeled as 

where n > m. The problem is thus to estimate the coefficients a,- and 6, using the sampled 

input and output data and {y(A;)}. 

This problem must be solved efficiently and accurately since as indicated in Section 2.2, 

accurate identification of the continuous-time filter to be tuned should be preceded for filter 

adjustments. The system model T(s) is the mathematical equation representing the relationship 

between the input and output at all times. A feasible way to obtain such a model is to apply 

appropriate inputs to the filter and observe its outputs. The observed (sampled) input and 

output data are then processed to estimate the model. It is desirable that the order of the 

system model be the same as that of the actual physical filter. However, as mentioned in 

Section 2.3, the order of the actual filter can not be detected easily and is usually greater than 

that of the desired response because of the over-ordering effects due to parasitics. In that case, 

a lower-order model should be used to estimate the over-ordered system because the model 

for system ID should have the same order as the desired response for easy adjustment. The 
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Figure 2.6: Block diagram representing the system ID problem 
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problem of identifying over-ordered systems with lower-order models is deferred for the present 

and will be discussed in Section 2.4.5. Until then, it is assumed that the order of the system to 

be identified is known, and a model which has the same order as the actual system is used for 

system ID. 

There are several ways to get an estimation of T{s)  from the input-output samples as 

shown in Fig. 2.7. The z-domain model T{z) is a discrete-time equivalent to the s-domain 

model T(s) and is described as 

T(z )  — '  

The z-domain system ID (path < 1 >) is defined as a problem to estimate the discrete-time 

model  T{z)  f rom the  inpu t -ou tpu t  samples  {a : (6 )}  and  { î / ( fc )} .  On  the  o ther  hand ,  the  s -

domain system ID (path < 4 >) is defined here as a problem to estimate the continuous-time 

model T{s) from frequency response data {T'(jwt)}. The z-domain system ID problem has 

attracted major attention since the estimation of the parameters of a discrete-time model is 

more straightforward although most systems are of the continuous-time type. From Fig. 2.7 we 

can find four different methods to get T{s) from {%(&)} and {;/(&)}, i.e.. 

Method 1 ; < 2 > 

Method 2: <l>-<6> 

Method 3: <3>-<4> 

Method 4: <3>-<5>-<6> 

Method 1 can be called the "direct method" and the others the "indirect method." Most 

direct methods [62, 63, 64] are based upon the differential equations which are the basic models 

for continuous-time systems. Because of the difficulty to accurately estimate the derivatives 

from sampled input-output data, the differential equations are transformed into integral equa

tion forms. To calculate multiple integrations from sampled data, prefiltering is performed 

such as the numerical integration, the bilinear transformation, and orthogonal functions. After 

prefiltering a discrete-time ID model which contains the continuous-time model parameters can 

be obtained. Now, various parametric system ID algorithms can be applied to the discrete-time 

model to estimate the continuous-time model parameters. 

In the indirect methods the original problem can be decomposed into a few simpler prob

lems. Method 2 utilizes the input-output samples to first estimate a discrete-time model us

ing 2-domain system ID algorithms and then determine an equivalent continuous-time model 
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z-domain model 
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Figure 2.7: Relations among sample data and system models 

through z-to-a transformation [58]. In method 3, frequency responses (magnitude and phase) of 

the continuous-time system are estimated at a set of frequencies from the input-output samples 

and  then  the  s -domain  mode l  i s  e s t imated  based  upon  the  f requency  response  da ta  us ing  s -

domain system ID algorithms [40, 9]. Another indirect method (method 4) is possible through 

path <3>-<5> — <6>. In path < 5 >, the discrete-time model is estimated from 

frequency response data [57, 56]. 

The indirect methods are considered the candidates for the continuous-time filter identi

fication to avoid the complicated prefiltering problem required in the direct method. In this 

section method 2 and 3 will be investigated and method 3 is precluded since it looks somewhat 

inefficient. Among many well known parameter estimation techniques such as least squares, 

maximum likelihood, correlation, instrumental variable, and so on, we will primarily utilize 

the method of least squares because it is conceptually simple and applicable to most practical 

situations. In fact, the LS method can be applicable to all the paths shown in Fig. 2.7. 

2.4.1 z-domain System Identification 

In the z-domain system ID, a set of time-domain input and output samples are used to 

estimate the coefficients of the transfer function T{z) which models the system to be identified. 
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x°(k) B(z-i) 

1+A(z'") 

y°(k) 

n(k) 

4±> y(k) 

Figure 2.8: Basic system configuration for ^-domain system ID 

The most popular and basic system configuration for z-domain system ID is shown in Fig. 2.8 

[45, 46, 55] where the foUowings are assumed: 

1. All the noise effects corrupting the input and output signals of the system can be lumped 

into a single additive noise source n{k) at the output. 

2. The input x°{k )  can be observed without any noise since it is a specifically designed test 

signal or a control signal. 

3. The noise n{k)  is a stationary random process with zero mean and is uncorrelated with 

bo th  the  t rue  sys tem inpu t  and  ou tpu t ,  x°{k )  and  y°{k ) .  

The z-domain model T{z)  of the system to be identified can be expressed as 

T( ) = ^  bo + + • •  •  + 
X°(z )  l  +  i4(z - i )  1+ a i z - i+02^-2+ •• •  +a„2-"  •  

where X°{z )  and Y°{z )  are the ^-transformations of x°{k )  and y°{k )  respectively. If we define 

q as the shifting operator such that 

g~ ' [a ; ( fc ) ]  =  x{k  -  i ) ,  

the system can be expressed by the difference equation 

[1 + A{q-^ )]y ' ' i k )  = B{q- ' )x°{k )  (2.16) 

where 

— bo-\-biq ^+629 ^ + + 

A{q~^) = aiq~^ + a2q~^ + • • •  + t tnq'" .  
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The observed output data contaminated by the noise source n{k) is 

y{k)  = y°{k)  + n{k).  (2.17) 

Substituting (2.17) into (2.16), the system equation becomes 

[l- \rA(q ^)]y{k)  = B{q ^)x°{k)  + v{k)  (2.18) 

where 

v{k)  = [1 + A{q ^)]n{k) .  (2.19) 

The problem of ^-domain system ID is now to estimate the parameters o, and 6, in (2.18) 

from the observed input-output samples {x°(A:)} and {y{k)}. Many methods are possible to 

solve the problem. Among them least squares (LS) algorithms [44]-[50] that are the most 

popular methods will be discussed. The ordinary LS algorithm which usually leads to a bi

ased estimate and the generalized LS (GLS) algorithms where the bias is compensated using 

noise whitening filters are investigated, and their performances are evaluated through extensive 

simulations. 

2.4.1.1 z-domain Least Squares Algorithm In the z-domain LS method the 

well-known LS algorithm is directly applied to (2.18). The equation can be rewritten as 

With a set of N measurements at k  = 1,2,3, . .  . ,N,  we can have the following matrix equation: 

y(k)  = -A(g ^)y(k)  + B(q ^)x°(k)  + v(k)  

= <;t>^û + v(k)  

where 

6 = [ai ,-•  • ,an,bQ,-•  

y  =  *0  V (2.20) 

where 

y = [2 / (n  + l ) ,2 / ( re  +  2) , - - - ,2 / ( iV) ]^  

v = [ i ; (n - l - l ) , i ; (7 i - t -2 ) ,  • • • , t ) ( iV) ]^  
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or 

* = 

-vin)  

-y{n + 1) 

-7 / (1 )  x ' ' ( r i+ l )  

-y{2) x°{n + 2) 

x°{n  — m + 1) 

x°{n — m + 2) 

—y{N — l )  • • •  —y{N-n)  x°{N)  x°{N — m)  

The dimension of matrix ^  is  {N-n)x{n+m +1). The LS estimate of 0  can be obtained 

by minimizing the sum of squared errors, v^v, with respect to 0. By solving 

ô(v^_ 
80 

the LS estimate is given by 

Ôls = (2.21) 

From (2.21) and (2.20), the LS estimate can be rewritten by 

0LS = e + (*^*)-^*^v 

= 0 

where jg the pseudoinverse of *. Thus, the bias of the z-domain LS estimate becomes 

b = E[0LS -  0] 

= ^^[^Ls] - 0 

= E[0^v], 

where E is the expectation operator. If * and v are statistically independent and f7[v] = 0, 

then the LS estimate 0LS is consistent and unbiased [45]. However, the residual vector v is 

usually correlated with the matrix $ even when the output noise {n(fc)} is an uncorrected 

white noise sequence. The biasedness of the ordinary LS estimation has been explicitly shown 

in [55] and [46]. 

2.4.1.2 z-domain Generalized Least Squares Algorithms To compensate for 

the bias of the LS es t imate ,  i t  i s  a ssumed in  z -domain  GLS a lgor i thms  tha t  the  res idua l  v(k )  

is the output of a linear filter with a white Gaussian noise input e{k). Generally, v{k) can thus 

be modeled as an autoregressive moving-average (ARMA) process, i.e., 

(2-22) 
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Since it has been shown in [65, Section 8.6] that the AR model (where D{q~^)  =  1) is superior 

to the ARMA model or the MA model (where C{q~^) = 0) from the viewpoint of stability and 

computational efficiency, the AR model based on [51] and a simple modified MA model based 

on [61] are investigated. 

First, if v{k)  is modeled as  a pth-order AR process 

The coefficients of C(9 should be determined such that [1 + A(g ^)][1 + C(ç ^)]n(A) becomes 

[1  +  Ciq  ^)]!;(&) = e(A) (2.23) 

where 

C{q-^)  = ciq-^ + C2Ç-2 + • • • + c„q-P,  

then by combining (2.23) and (2.19), 

[l + yl(g ^)][1 + C(9 ^)]n(A) = e(/:). 

a white noise sequence with zero mean. Defining the following: 

we have 

V = Zc + e. 

The vector c can be obtained by a LS estimate 

c = (Z^Z)-^Z^v. (2.24) 

Combining (2.23) and (2.18), we have the new system equation 

[1 + Aiq- ' ) ] [1  +  C{q- ' ) ]y ik )  =  B{q- '  )[1 + C{q- ' ) ]x ' ' {k )  +  e(&). (2.25) 

By defining 

y{k)  =  [1  +  Ciq  ^ )]y ik )  

F( fc )  =  [ l  +  C{q- ' ) ]x ' ' i k ) ,  

(2.26) 

(2.27) 

(2.25) becomes 

[1  +  A{q  ^ ) ]y{k )  =  B{q  ^ )x°{k )  +  e{k) .  
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We can have a modified matrix equation 

y = $0 + e 

and the new LS estimate 

ê= (2.28) 

Now, it is clear that the new LS estimate of 0  will be consistent because the new system model 

has an uncorrelated residual error vector e. The standard proofs of consistency for LS estimators 

rely upon the uncorrelatedness of the residual error vector [53]. In most GLS algorithms the 

parameters of the system, o, and 6,-, and the parameters of noise model, c,- are alternatively 

estimated in an iterative process. The iterative procedure is as follows: 

Step 1 Set C(q~^)  =  1. 

Step 2 Form y  and x°  using equation (2.26) and (2.27). 

Step 3 Obtain the LS estimate using equation (2.28). 

Step 4 Stop if converged. 

Step 5 With A{q~^) and B{q~^) estimated, compute the residual {«(A:)} using equation (2.18) 

and then estimate C{q~^) using equation (2.24). Go to Step 2. 

This GLS algorithm based on the pth-order AR model will be denoted as GLS(ARp). 

In the second method v{k)  is modeled as a modified MA process 

v{k)  = [1 + A'{q- ' ) ]e (k )  (2.29) 

where A'{q~^)  is the previous estimate of A{q~^)  and thus the coefficients of A'{q~^)  are simply 

obtained from the previous estimate 6. From equation (2.19) and (2.29) 

If this algorithm converges, then A'{q~^)  converges to A{q~^) .  Thus, the algorithm will work 

very well when {»(&)} is a white noise sequence. This GLS algorithm based on the modified 

MA model will be denoted as GLS(MAp), where 'p' does not represent the order of the noise 

model as in GLS(ARp) but implies that the model parameters are obtained from the previous 

estimates. The iterative procedure for GLS(MAp) can be readily formulated using the similar 

method as that for GLS(ARp). 
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2.4.1.3 Simulation Results The ^-domain LS algorithm and GLS algorithms are 

compared through computer simulations. First, the characteristics of the noise associated with 

the system and the measurement process should be assumed for simulations. We will consider 

three cases as shown in Fig. 2.9. 

In Model 1, output samples are corrupted with the additive correlated noise which is the 

output of a noise shaping Alter when the input is a white Gaussian noise e(A:). In Model 2, 

output samples are corrupted directly with a white Gaussian noise «(t), which is one commonly 

encountered case in system ID. In Model 1 and 2, only output samples are noisy and the input 

samples are assumed to be observed without any noise. However, there are many practical 

situations where the input as well as the output can not be observed without noise. These 

cases are simulated with Model 3 where the input and output samples are contaminated with 

white Gaussian noise Tn{k) and n(fc), respectively. 

A second-order system of which the transfer function is 

'pfz)  = 
^ ^ 1.0 - 0.5Z-1 + 0.5Z-2 

is chosen for simulations. The ideal z-domain parameter polynomials and the ideal parameter 

vector are thus 

yl(z-i) = -0.5^-1 + 0.5^-2 

B(z-i) = 1.0 

e = [-0.5,0.5,1.0]^ 

The input {a;°(A;)} is a sequence of independent Gaussian random variables with unity variance 

((Tg = 1.0) and zero mean. A noise z-domain parameter polynomial C{z~^) = 0.7z"^ is chosen 

for Model 1. The zero mean independent Gaussian random noise e(fc), m(fc), and n{k) have 

the same variance 

From 300 input-output samples (data length N = 300), the parameters of the system were 

estimated using three different algorithms for three different noise models at various signal to 

noise ratios (SNR). The SNR in dB is defined as lQlog{aUa^). The simulated sample mean of 

squared estimation errors {Ea[6j0e]) are shown in Fig. 2.10 (a), (b), and (c) for noise model 1, 

2, and 3, respectively. The sample mean operator Eg is defined by 

+ X2 + .  . .  +  ̂ N,):  

where Ns is the sample size. The estimation error vector 0e is 

6e = 0 — 6.  
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Figure 2.9: System configuration for z-domain system ID with noise model (a) Model 1 
(b) Model 2 (c) Model 3 
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The iteration limit for GLS methods was set to 10. Every result was computed from 100 

independent simulations, which means that the sample size is 100. 

In most cases GLS algorithms show better results than the ordinary LS algorithm, which 

implies that the bias is reduced by using GLS algorithms. For noise model 1, the GLS algorithm 

using first-order AR model, GLS(ARl), gives the best results since the real output noise was 

assumed in noise model 1 such that the residual v{k) of the system equation became an AR pro

cess. As expected, the GLS algorithm based on the modified MA model, GLS(MAp), exhibits 

the best results for noise model 2. On the other hand, the bias reduction by GLS algorithms is 

not good for noise model 3 compared to that for noise model 1 or 2. The GLS(ARl) still shows 

better performance for all simulated noise levels than the LS algorithm. The convergence rate 

of z-domain GLS algorithms are shown in Fig. 2.11. The iteration number 0 corresponds to the 

results of the LS algorithm. For most cases, the GLS algorithms converge within 5 iterations. 

So far, we have investigated only the GLS algorithms using AR and modified MA models. 

However, the residual can be modeled as a pure MA model or an ARMA model as shown in 

(2.22). To compare them, the GLS algorithms using a second-order MA model GLS(MA2) and 

using a first-order ARMA model GLS(ARMAl) were simulated and their results are depicted 

in Fig. 2.12. The methods to estimate the parameters of the MA and ARMA models can be 

found in [65, 66, 45]. The simulation results indicate that the GLS algorithms show similar 

performance and that they give better results than the LS algorithm. 

2.4.2 s-domain System Identification 

As shown in Fig. 2.7, the s-domain system ID uses a set of frequency response data (gain 

and phase responses) to estimate the coefficients of a model T{s). In this section s-domain least 

squares algorithms are investigated as frequency-domain parametric continuous-time system ID 

methods. 

Linear time-invariant continuous-time systems can be expressed as (n > m) 

J,/ \ _ B{s) _ bp + biS + b2S^ + ' —h 
1 + I4(S) 1 -F AI5 -F 025^ -I 1- A„S" ' 

In many cases, frequency response data can readily be obtained or measured, but some mea

surement errors are unavoidably involved which is shown in Fig. 2.13. By using s = ju), the 

ideal system equation can be expressed in terms of ju. 

[1 + Ai jL j ) ]T{ jw)  =  B{ ju)  (2.30) 
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Figure 2.10: z-domain system ID results. Sample mean of the squared parameter estima
tion error {Ea[6'^6e\) versus input signal to noise ratios in dB computed from 
100 independent simulations (Data length iV=300) with actual system noise 
models (a) Model 1 
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Figure 2.10: (continued) (b) Model 2 (c) Model 3 
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Figure 2.11: Rate of convergence of z-domain system ID algorithms (y-axis: 6^6e, input 
signal to noise ratio SNR=3.0 (dB), data length N = 300) 
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Figure 2.12: Performance comparison of z-domain LS algorithms with an actual system 
noise model of Model 3. The sample mean of the squared estimation error 
{Ea[6'^6e\) were computed from 100 independent simulations with data length 
N = 300 
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Figure 2.13: Basic system configuration for s-domain system ID 

where 

A{ju} )  =  a i ( iw)  +  02( jw)^  +  • •  •  +  f lnO'w)"  

B{ ju)  =  bo +  bi{ ju j )  +  b2{ ju) f  +  +  

The observed data TMU^) which can be obtained from measured gain and phase responses are 

con tamina ted  by  n( jc j ) .  

=  T{ jo j ]  +  n( ju} ) .  (2.31) 

It is assumed that n{ ju)  is an independent zero-mean additive complex random noise. Substi

tuting (2.31) into (2.30), the system equation becomes 

[1 -I- A{ju)]TMiM = Bi jo j )  + v{ ju )  (2.32) 

where 

i;(jw) = [H- A{ju} )]n{ ju} ) .  (2.33) 

The problem of s-domain system ID is now to estimate the parameters a, and 6, in (2.32) 

from the observed data TMU^)- Ordinary least squares (LS) algorithms and generalized least 

squares (GLS) algorithms have been used for the z-domain system ID in the previous section. As 

5-domain counterparts, the algorithms are applied for the above s-domain system ID problem. 

These s-domain LS and GLS algorithms are comparatively investigated based on the robustness 

and efficiency. 

2.4.2.1 s-domain Least Squares Algorithm At w = wt, equation (2.32) can be 

rewritten as 

Îm(M) = -A{juk)TM{3'^k)- \r  B{iu}k)-\-v{j(^}k)  
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= 'P ' ï^  + vijujk)  

where 

<l>k = [-(jWjt)rM(iWA:), - --, 1, ( jUk),  •  •  • ,  

6  = [oi ,  '  - -  ,an,6o,  '  

of N measurements at wt, k  = 1,2,3,...,7V, we can have the following matrix 

y = *6 + V (2.34) 

y = [îm(M), • • •, TmO'wn)]^ 

V = [«(jwi), v(iw2), • • •, u(iw;v)]^ 

or 

-(iwi)"rM(iwi) 1 (jwi) ••• (M)'" 

-(JW2)"ÎM(JU;2) 1 (jW2) ••• (iW2)"* 

{j i^NTTMU'^N) 1 (jW) ••• 

The LS estimate of 9  can be obtained by minimizing the sum of squared complex errors, 

v*v (* denotes the complex conjugate transpose), with respect to 6. Thus, one substantial 

difference between the s-domain and ^-domain LS equations is that the cost function of the 

s-domain LS estimation is in the frequency domain while the cost function of the z-domain LS 

estimation is in the time domain. By solving 

de 

the LS estimate is given by 

Ôls = [Ae($'*)]-^Ae[*'y]. (2.35) 

From (2.34) and (2.35), the LS estimate can be rewritten by 

ÔLS = e + [Ae($'*)]-^M*'v]. 

With a set 

equation: 

where 

-(jwi)rM(jwi) ••• -

•  • •  —  
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Thus, the bias of the s-domain LS estimate becomes 

BiÔLs -0)  = 

It can be seen that the ordinary LS method gives a biased estimate since $ and v are not 

statistically independent. It should be noted that the matrix $ also contains observed noisy 

data, and is quadratic in the data and hence OLS is nonlinear in the data. This a-domain 

ordinary LS algorithm is often called Levy's method [52]. To reduce the bias introduced in the 

LS method, s-domain GLS algorithms are presented in the next section. 

2.4.2.2 s-domain Generalized Least Squares Algorithms To compensate for 

the bias of the LS estimate, it is assumed in s-domain GLS algorithms that there possibly exists 

a H{jij) satisfying 

H{ju)v{ ju})  =  e(jw). (2.36) 

such that {e(jw)} is a white complex noise sequence with zero mean. Combining (2.36) and 

(2.33), 

(iw)[l 4- A{jLo)]n{ ju)  =  e{ ju) .  

If an appropriate way to obtain the H{ju})  can be found, then the system equation (2.32) can 

be modified as 

Hij i j ) [ l  - f  A( jw)]rM(jw)  =  H{ju)Bi ju; )  4-  e ( jw) .  

A t  U = LJk 

H{juk)TMij^k)  = -H{ju}k)A{jwk)TM{ji^k)  + H{jwk)B{ju}k)  + e(;w&). 

Defining the follows: 

e = [e{jui),e{ju2),---,e{juJN)f 

y = (2.37) 

^k = ^(jw&)[-(ywt)7M(jwt), - ", -(jwt)"2M(jwt), 1, (jwt), - ", (jwt)™]^ (2.38) 

* = (2.39) 

we have a modified matrix equation 

y = *0 -{- e 

and the new LS estimate is 

0 = [i2e(é '$)]-^iZe[é*y].  
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Now, it is clear that the new LS estimate of 0  will be consistent if the equation (2.36) is satisfied 

because the new system model has an uncorrelated residual error vector e. 

The remaining problem is how to determine H{ju) .  Two methods will be presented. 

One is called s-domain GLS since it is similar with the s-domain GLS method using an AR 

residual model. The other can be referred to as the 5-domain counterpart of the z-domain 

GLS algorithm, GLS(MAp), and will be called s-domain modified GLS (simply M-GLS). This 

modified GLS algorithm is actually equivalent to the iterative complex LS algorithm presented 

in [9]. 

In the 5-domain GLS algorithm, the H{ju)  is modeled as 

H{ju) )  = 1 + C{ju>)  

and thus 

[1 + C{ju} )]v{ ju j )  =  e{ ju} ) ,  (2.40) 

where 

C(juj)  = Ci ( jw)  +  C2{juf  + h Cnijuf .  

It is assumed that the system is stable such that the roots of [1 + C{ju j ) ]  lie left the j c j  axis. 

The unknown parameters c, are iteratively estimated by the ordinary LS method. Equation 

(2.40) is rewritten at w = Wfc as 

v{juk)  = -C{ju}k)v{ju}k)  + e{juk)  

Defining the following: 

C =  [c i ,C2 , - " ,Cp]^  

e = [e{jLJi),e{ju}2),---,e{juN)f 

Zfc = [-{j^k)v{juJk),  ••• , -{ j(^kyv{ju}k)f  

Z = [zi,Z2,---,ZAf]^, 

we have 

V = Zc + e, 

and the LS estimate of the parameter c, is given by 

c = [Re iZ*Z)] -^Re[Z* v ] .  

In the second GLS algorithm (M-GLS), the H{ju)  is modeled as 

H{jw)  =  1/[1  +  A 'Uw)] ,  
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where the coefficients of A'{ jL} )  are simply replaced by those obtained from the previous estimate 

6. Now we have 

v{ ju} )  = [1 + A'{ ju} ) ]e{ ju )  

If this algorithm converges, then A'{ ju )  converges to A{ju} )  and thus, sequence {e(jw)} ap

proaches {n{jco)}. This algorithm is very simple and efficient since the computational require

ment is much less than that of the GLS algorithm where two LS estimations are needed every 

iteration. 

The iterative procedure for the s-domain GLS and M-GLS methods are as follows: 

Step 1 Set H{juJk)  = 1 for z = 1,2,.. 

Step 2 Form * and y according to equation (2.37)-(2.39). 

Step 3 Obtain the LS estimate 

Ô = [iZe(ê*é)]-^iîe[#'y]. 

Step 4 Obtain H{ju})  

GLS Generate v{ ju j )  from (2.32) using the previous estimate 0 ,  and compute the LS 

estimate of c 

c = [Re { Z ' Z ) ] -^Re [ Z ' v ]  

and then compute H{juk) for A; = 1,2,..., iV using 

H{M) = 1 + C{M). 

M-GLS Obtain coefficients a,- from the previous estimate 0 and compute A'{juk), and 

then compute H{juk) for fc = 1,2,...,# using 

H{juk) = 1/[1 + A'{iu}k)]-

Step 5 Go to Step 2 and repeat until convergence is obtained. 
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2.4.2.3 Simulation Results In this section the ^-domain LS, GLS, and M-GLS 

algorithms are compared through extensive simulations based upon the bias and consistency of 

their estimates. The test system is a second-order lowpass notch filter which has the following 

ideal transfer function: 
0.419080-t-0.176000s2 

~ 1.0 -K 0.1014135 + 1.00508432" 

The ideal parameter vector is thus 

ax 0.101413 

«2 1.005084 

ba 
= 0.419080 

h 0 

h 0.176000 

The noisy observed data Tutij^k) are generated from the ideal frequency response data T{juik) 

which are added by a random complex noise n{juk) where Re[n] and lTn[n\ are uncorrelated 

and uniformly distributed with zero mean and variance The frequency response data are 

sampled at equally spaced normalized angular frequencies from 0 to 2. 

The solutions of the a-domain LS problems as well as the z-domain LS problems of the 

previous section are computed using the singular value decomposition (SVD) method. The SVD 

method fixes the roundoff problem from which other direct methods using LU decomposition 

and Gauss-Jordan elimination usually suffer. Moreover, the SVD method can also cure the 

ill-condition problems of the matrix to be inverted [54]. 

One typical simulation results with <7„ = 0.1732 are given in Fig. 2.14 where the conver

gence rate of GLS and M-GLS algorithms at two different data sizes are shown. The iteration 

number 0 corresponds to the results of the LS algorithm. The y-axis is the sum of squared 

es t imat ion  e r ro r ,  i . e . ,  OjOg.  The  es t imat ion  e r ro r  vec to r  Og i s  de f ined  as  before ,  i . e . ,  0^  =  6  — 6 .  

Both the convergence rate of GLS and M-GLS are very fast and converge after two iterations 

which is faster than that of z-domain GLS algorithms. It can also be clearly seen that the 

GLS and M-GLS algorithms give much better results than those of the LS algorithm. In this 

simulation very significant noisy data (CT„ = 0.1732) are used to more clearly differentiate the 

results of the three algorithms. The significantly contaminated frequency response data and 

the ideal gain response of the notch filter are shown in Fig. 2.15. The identified gain responses 

are shown in Fig. 2.16 with the actual response for comparison. Fig. 2.16(b) is a magnified one 

of Fig. 2.16(a). Even with a very high level of noise, the GLS and M-GLS algorithms give good 
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results while the LS algorithm results in a poor estimation. 

In order to investigate the consistency of those algorithms, the sample mean of the squared 

estimation error EglO'^Be] was computed from 100 independent simulations (sample size Ns = 

100) at different data length from iV = 50 to 500. In this simulation the standard deviation of 

the noise was set to 0.029, and the iteration limit for the GLS and M-GLS algorithm was set 

to 5. The results are shown in Fig. 2.17. An estimate 6 of the parameter vector 0 is consistent 

[53],[45] if in the long run, the error vector Be approaches the zero vector or alternatively the 

mean squared error E[0'^6e] approaches zero, i.e., 

lim E[Oe\ = 0. 
TV—»oo 

or 

lim £[0j0e] = O, 
yv—*oo 

where N is the data length. An estimate 6 is said to be unbiased if the expected value of the 

estimation error vector 9^ is zero for all N [53],[45], i.e., 

E[de] = 0 for all iV > n + m + 1 

The plots in Fig. 2.17 show that the sample mean squared errors of the GLS and M-GLS 

estimates decrease much fcister than than that of the LS estimate as the data length increases 

up to 500. 

To compare their estimation accuracy and the level of bias, the sample mean and variance 

of parameter estimation errors have been computed from 500 independent simulations. The 

absolute values of the sample means of 500 parameter estimation errors, |Ea[^e,]|, are shown 

in Fig. 2.18(a), where OeCs are the individual elements of the error vector 0^. Their variances 

calculated using {Es[6\^ - Eg[6e,]) are also shown in Fig. 2.18(b). Although the individual 

parameters (ci, og, bo, bi, 62) may have different units and thus their means and variances 

can not be compared together, they were plotted with the same y-axis for convenience. In this 

simulation the following conditions were used: noise standard deviation cr„ = 0.029, data length 

N = 50, and iteration limit=5. It can be seen from Fig. 2.18(b) that the estimation accuracy 

is the best in the M-GLS algorithm. These simulation results indicate that among the three 

s-domain system ID algorithms, the M-GLS algorithm is the most robust. 

2.4.3 s-to-z and z-to-s Transformation 

The a-to-z transformation has been one of important parts in digital filter and digital 

control system design where the well-established information of continuous-time filters and 
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Figure 2.14: Rate of convergence of s-domain system ID algorithms, GLS and M-GLS 
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Figure 2.15: Sampled noisy gain response data (cr„=0.1732) and the ideal gain response 
of the second-order lowpass notch filter 



www.manaraa.com

41 

10 Actual 
LS 

GLS 
M-GLS 

0 

10 

•20 

•30 

-40 

•50 

-60 

0 0.5 1.5 2.5 
Normalized Frequency (Rad/Sec) 

10 

8 Actual 
LS 

GLS 
M-GLS 

6 

4 

2 

0 

•2 

-4 

•6 

8 

10 
0.5 0.6 0.7 0.8 0.9 

Normalized Frequency (Rad/Sec) 
1.1 1.2 

(b) 

Figure 2.16; (a) The gain responses identified by the a-domain system ID algorithms (b) 
Magnified view of (a) (t7„=0.1732, data length #=50, Iteration limit=10) 



www.manaraa.com

42 

LS -ô— . 
GLS H— 

M-GLS -E}--

le-04 

B-
--0. 

le-05 •B.. 

•B S- .  

50 250 350 400 450 500 100 150 200 300 
Number of Data 

Figure 2.17: Sample mean of the squared parameter estimation error {EalOjOe]) versus 
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Figure 2.19: z-to-a and a-to-z transformation methods 

continuous control systems is utilized. The z-to-s transformation is also required for many 

areas, especially for indirect continuous-time system identification (see Fig. 2.7). Many methods 

such as numerical integration, pole-zero mapping, and hold equivalents, have been reported in 

the literature [53, 60, 59] for both transformations. 

In this section a new approach to the transformation problem is presented. As depicted 

in Fig. 2.19, complex least squares algorithms can be applied to solve the problems. The s-

to-z transformation < 7 > can be decomposed into two steps through path < 9 > - < 5 > 

where the frequency samples {T{ju}k)} are directly calculated from the known a-domain transfer 

function T{s), and then the LS algorithm is used to estimate the parameters of the equivalent 

z-domain model  f rom the frequency samples .  This  approach wil l  be  cal led a  complex LS s-

to-z transformation method. The z-to-s transformation < 6 > can also be decomposed into 

< 8 > — < 4 > where the frequency samples can be obtained from the known 

z-domain transfer function T(z). These frequency samples can be fed into the LS algorithm 

to estimate the parameters of a s-domain model such that the estimated s-domain model can 

approximate the z-domain transfer function as well as possible. This approach will be called a 

complex LS z-to-s transformation method of which the algorithm is actually equivalent to the 

s-domain system ID algorithm presented in Section 2.4.2. 
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2.4.3.1 Complex LS s-to-z Transformation Method The problem of a-to-z 

transformation is that given a continuous-time transfer function T{s), determine the discrete-

time transfer function 

such that they have approximately the same characteristics. Equation (2.42) can be rewritten 

as 

[1 4- = 5(6"^'*'^) (2.43) 

where T is the sampling period. Prom the given T{s), we can calculate the complex frequency 

response data T{jwk) for fc = 1,2,3, Since we want T(juj) and T(e~''^) to be as close as 

possible in a frequency range of interest, by replacing in equation (2.43) with T'(jw) 

we have for u — Uk 

T{juk) = -A(e-^''*"'^)r(M) -f + v{juk) 

where «(jw*) is the residual which should be minimized. For N different frequencies, we have 

the following matrix equation: 

y = #0 + V 

where 

y = [T(;wi),r(jW2),...,T(jw^)r 

V = MjWi), v{juJ2), • • •, v{ju}N)Y 

6 = [oi,-",0n,6o, 

and 

* = -e-J-^^T(jw2) 

-e-J'^i"^T(ja;i) 1 

_e--''*^"^T(iw2) 1 

_e-i'^w3'T(ia;;v) ••• -e--''*'^"^T(iwN) 1 

Now we can obtain a LS estimate 

ÔLS = [Re{^*^)]-^Re[^*y]. 

g-jw] mT 

g-jui2niT 

G-JUNMT 

(2.44) 

The elements of 9 are the coefficients of the z-domain model. The estimation can be improved 

by using an iterative procedure similar with the M-GLS algorithm presented in the previous 

section. 
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To investigate the performance of the proposed method, a second-order s-domain filter of 

which the transfer function is 

was transformed, and the results were compared with those obtained by the well-known bilinear 

transformation with prewarping. The transformed z-domain gain and phase responses and 

their absolute deviations from the s-domain responses are shown in Fig. 2.20 and Fig. 2.21 for 

Wg/Wp = 20% and for w,/wp = 2?:, respectively, where w, is the sampling frequency and Wp = 1 

is the pole frequency. 

The critical frequency for prewarping in the bilinear transformation was set to Wp. A set of 

100 frequency samples were uniformly selected from the normalized frequency range of 0 to 0.8 

for the complex LS a-to-z transformation and the iteration limit was set to 5. The transformed 

z-domain transfer functions are as follows: 

• Prewarped Bilinear Transformation with T = 0.1 

_i 2.37915764e - 03 -t- 4.75831529e - 03%-^ + 2.37915764e - OSz'^ 
' ~ l.OOOOOOOOe -f-OO- 1.89539638e + OOz'i + 9.04913013e - Olz'^ 

# Complex LS s-to-z Transformation with T = 0.1 

8.31715104e-04 + 7.92425606e - 03%"^ + 7.52360402e- 04%'^ _ . 
^ ~ l.OOOOOOOOe +00- 1.89532901e + OOz-i + 9.04837342e - Olz'^ ^ ^ 

# Prewarped Bilinear Transformation with T = 1.0 

..-In 1.61781590e - 01 + 3.23563180e - Olz'^ + 1.61781590e - 012"^ 
^ ~ l.OOOOOOOOe +00- 7.60595211e - Olz'i + 4.07721571e - Olz'^ 

• Complex LS s-to-z Transformation with T = 1.0 

7.41585933e-02 + 4.88408867e-01z-^ + 1.75869912e-02z-2 
^ ~ l.OOOOOOOOe+00- 7.83985434e-01z-i + 3.64119370e-01z-2 ^ ' ' 

It can be seen that the complex LS s-to-z transformation gives much better results than 

the prewarped bilinear transformation in most frequencies of interest except for dc and Wp. 

Note that Wp was the critical frequency for prewarping. At a high sample rate w^/wp = 207r 

(T = 0.1), both methods give fairly good results. However, at a low sample rate Wg/Wp = 2iv 

(T = 1.0), their performances are degraded. It has been observed from extensive computation 

that in the complex LS s-to-z method, the performance improvement with iteration is almost 

negligible, and the number of the frequency samples also has little effect on the performance. 

Except for the sample rate, the factor that can affect the performance is the frequency sampling 
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Figure 2.20: Response of a-domain second-order lowpass filter and z-domain equivalents 
for Wg/Wp = 207r (a) Gain and phase responses 
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Figure 2.20: (continued) (b) Absolute gain and phase errors 
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Figure 2.21: Response of s-domain second-order lowpass filter and ^-domain equivalents 
for Ws/Wp = 2% (a) Gain and phase responses 
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range. Thus, the frequency sampling range should be carefully selected such that it can cover 

the frequency range of interest. 

The complex LS g-to-z method is very attractive because it performs very accurate trans

formation. In the frequency range of interest, it offers improvements in accuracy by well over 

two decades for = 207r and one decade for w^/wp = 2t: compared to the popular bilinear 

transformation method. 

2.4.3.2 Complex LS z-to-s Transformation Method The problem of z-to-a 

transformation is that given a discrete-time transfer function r(z~^), determine the continuous-

time transfer function such that they have approximately the same characteristics. For this 

problem, we can use the g domain system ID algorithm, M-GLS, presented in the previous 

section with the frequency sample data directly computed from the given z-domain transfer 

function. The parameter estimation of a model T(s) can be obtained at each iteration from 

equation (2.44) where 

0 = [^17 * * * ) ^0) * ' ' 1 ^m] • 

and 

* = 

1 (jwi) ... (jwi)" 

1 (jwz) (jwz)" 

... 1 (jW) 

The elements of 0 are the coefficients of the 5-domain model. 

This complex LS z-to-5 method is applied to the z-domain transfer function in (2.45) and 

(2.46) and the results are compared with those obtained from the bilinear transformation. The 

transformed s-domain gain and phase responses are shown in Fig. 2.22 for w^/wp = 20ir. In 

Fig. 2.23 the absolute gain and phase errors are shown for w^/wp = 2%. A set of 10 frequency 

samples were uniformly selected from the normalized frequency range of 0 to 1.0 for the complex 

LS s-to-z transformation and the iteration limit was set to 1. 

As in the complex LS s-to-z transformation, the performance of the complex LS s-to-z 

method has little to do with the iteration number and the number of the frequency samples 

but gives much better results than the bilinear transformation. This indicates that the complex 
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Figure 2.22: Response of z-domain second-order lowpass filter and s-domain equivalents 
for LJg = 27r. (a) Gain responses (b) Phase responses 
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LS methods can accurately perform the a-to-z or z-to-s transformations with only one matrix 

inversion and with a few frequency data. Of course, the number of frequency samples must be 

greater than or equal to m + n +1 where n and m are the order of denominator and numerator, 

respectively. 

In section 2.4.1 several LS methods have been discussed for estimating the parameters of 

a z-domain model from the input-output sample data. The next step of the indirect method 

2 is thus to estimate a s-domain model from the identified z-domain model. The complex LS 

z-to-s method can thus be applied to this problem very well. 

2.4.4 Frequency Response Measurement Methods 

Frequency response measurements at discrete frequencies are required for continuous-time 

system identifications (see Fig. 2.7 path < 3 >). Accurate frequency response measurements 

are crucial, since the accuracy of frequency response measurements directly affects the accuracy 

of the continuous-time system identification through the indirect method 3. The measurement 

circuit implementation cost as well as the accuracy should be taken into account because the 

cost and the accuracy are usually in a trade-off relation. 

Two frequency response measurement algorithms have been reported in literature. They 

use sinusoidal inputs and collect input and output time-domain samples for further interpreta

tion. One uses FFT algorithms [53], and the other uses least squares algorithms [67] based on 

a first-order moving average (MA) model to estimate the frequency responses. A least squares 

(LS) algorithm based on a first-order auto-regressive moving average (ARMA) model has been 

presented and compared with the two algorithms mentioned above through extensive Monte 

Carlo based simulations [4]. The FFT method requires a large number of consecutive samples 

and thus, requires high-speed A/D converters and sample-and-hold circuits. In contrast, in the 

least squares methods each data set contains only a few consecutive input-output samples, and 

each set can be grabbed randomly or asynchronously. Thus, the least squares method requires 

lower cost for data acquisition hardware implementation than the FFT method. 

If a linear continuous-time system is excited by a sinusoidal input 

x{t) = Acos{u}ot), (2.47) 

then the output, in the steady state, can be described by 

y(t) = GAcos{oJot -f- <^), 
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where G and <t> are the gain and phase responses of the system at frequency Wg. The general 

frequency response measurement problem is to find G and ^ at a finite number of frequencies. 

Since experimentally obtained data are inevitably contaminated by some noise and system 

nonlinear effects, a reasonable approach is to find G and <(> which best fit the given data. 

2.4.4.1 FFT Method In the FFT method [53] the input and output are recorded 

for Nf sample sets at sampling frequency fs = l/T, from which the frequency response at one 

point is calculated. Each set contains two samples. Nf must be a power of 2. The output 

estimate can be defined as 

y{kT,) = GcCos{uokTa) + Gasin{wokT,), 

where 

Go = GAcos{(j>) (2.48) 

Gs = -GAsin(<j>). (2.49) 

It can be easily seen from (2.48) and (2.49) that if Gc fis and A are found, then the gain and 

phase responses can be calculated by 

a = ^^Joi + ei 

* = (&) ' 

The estimated Gc and G a which best fit to the data in the least squares sense are closely 

related to the DFT/FFT of yihTg) if the test frequencies are selected to be w; = 2Trl/{NfTs) 

for integer /, / = 1,2,.... The DFT/FFT of y{kTs) is 

y„ = FFT{y) = ^ GAcos 
k=o \ / / 

^(Gc — jGs), n = I 

0, n ̂  I 

The DFT/FFT of the input x{kT,) is given by 

X„ = FFT{x) = ^ Acos 
k=0 \ / / 

' n = l 

0, n ^ I 
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For 71 = /, the ratio of Yi to Xi is given by 

21 = Gc-jG, 
Xi A 

= 

Thus, in the FFT method the gain and phase responses at w; = 2nlf{ N j T s )  are obtained by 

the ratio of the FFT of y{kTa) to the FFT of x{kTa) for n = I. 

The FFT method estimates the frequency responses accurately in a fast way by the effective 

FFT algorithm, but using the FFT on y{kTa) and x{kTa) for only one frequency point is 

somewhat inefficient. This inefficiency can be alleviated by using a linearly frequency sweeping 

signal [40] or a chirp signal [53] of which the frequency changes from a starting value to a final 

value so as to estimate the frequency responses at several frequencies at once. However, the 

accuracy might be degraded at fixed Nj compared to that of the original method. Since the 

FFT method uses a large number of consecutive data, a fast data acquisition system is required 

for high frequency measurements to avoid the aliasing problem. 

2.4.4.2 LS Method with a MA Model In this algorithm [67] a first-order MA 

model is used to determine the gain and phase responses using the LS algorithm. If the input 

a;(<) is sampled aX t = to and t = to — T,, and the output y{t) at t = to , then the relationship 

between the output and input samples can be given by 

yito) = box{to) + bix(to - Ts), (2.50) 

where 

bo = G[co3(j) + sin(j)cot{uJoT3)] 
^ sin<f> 

^ siniuoTs)' 

Equation (2.50) is valid for all to provided oJoTg ^ nir for integer n. By taking the Fourier 

Transformation on (2.50) the frequency response at Wq is given by 

= 6o + 

If there is no measurement error, only two data sets are enough to determine bo and bi and 

thus, the frequency response exactly. Taking into account the measurement errors, a number of 

data sets can be used to perform the LS algorithm. This gives an estimation of bo and bi which 

best fit to the given data. The estimated coefficient vector can be described by a LS solution 

c = [A^A]-\A^yo], (2.51) 
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where c = [60,61]^ and A = [xo,x_i], and x_i is a sampled input vector, and Xq and yo are 

the input and output data vectors sampled with a delay T3. Vectors, XQ, x_i and yo have 

dimension Nmi where Nm is the number of data sets, and each data set contains 3 samples. 

In this method each data set contains only two consecutive input samples and one output 

sample. Since the data sets can be collected randomly or asynchronously, the data acquisition 

system can be implemented with three fast sample-and-hold circuits (two for input and one for 

output) and a slow A/D converter. 

2.4.4.3 LS Method with an ARMA Model To utilize a first-order ARMA model 

for the LS frequency response measurement, one more output samples must be added to the 

data set of the MA model. The input x{t) and output y(t) are sampled ait = to and t = to — Ts 

by four sample-and-hold circuits, and these four samples constitute one data set. Once all four 

samples are converted by an A/D converter which does not have to be fast, another data set 

is sampled with time delay Tint- Of course, the time interval, Tint, must be selected to be long 

enough for the A/D converter to finish conversion of four sampled and held data. T,„t does not 

have to be the same for the whole data acquisition period. The relationship between output 

samples and input samples for any one data set can be readily obtained as follows by applying 

basic trigonometric identities to (2.47) a,t t = to — T,: 

y{to) = aiy{to - T^) + box{to) + bix{to - TJ, (2.52) 

where 

fli = 1Icos{lJoTS) 

bo = Gcos{iJoTs + (f>)lcos{u;oT,) 

bi = —Gcos<f>lcos{uoTa). 

Equation (2.52) is valid for all to provided ujoT, ^ {2n -F l)7r/2 for integer n. The frequency 

response at Wq is given by 

Gei* = 

The LS solution can be obtained from equation (2.51), where Cq = [ai,6o)^i]^ and A = 

[y_i,xo,x_i], and x_i and y_i are sampled input and output data vectors, and XQ and yo are 

the input and output data vectors sampled with a delay Ta. The vectors have dimension Na, 

where Na is the number of data sets, and each data set contains 4 samples. In this method the 

data acquisition system can be implemented with one more sample-and-hold circuit added to 

the system for the MA model. 
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If the signals are sampled at the same rate for all data sets, i.e., Tint=Ta, as in the F FT 

method, then we can increase the number of data sets for the fixed total sample number. One 

data set can be obtained at every sample time since one input and output sample set contributes 

to two data sets as previous data and as current data. This is the case as the general time-

domain LS system identification methods do, where for the nth-order ARMA model N — n + 1 

data sets can be obtained with N input and output samples. For our first-order case, 2Na 

data sets can thus be used for the LS problem with increased dimension 2Na- This will lead to 

improved accuracy, but more cost for data acquisition will be required to grab a large number 

of consecutive data. 

Since the cost and the accuracy are in a trade-off relation, one of the two strategies can 

be selected according to which has a higher priority. This may be one advantage of the ARMA 

method over the MA method because in the MA method the number of data sets can not be 

increased that much through sampling with Tint = 31, , or even though it can be increased by 

adding one more sample-and-holder, one output sample can contribute to only one data set. 

2.4.4.4 Simulation Results The three frequency response measurement algorithms 

are compared through Monte Carlo based simulations. The nonidealities of the system under 

test, the data acquisition system, and the excitation signals are included in this simulation. The 

input-output measurement noise associated with the data acquisition process such as quantiza

tion noise and system noise are modeled as uniformly distributed additive random numbers. If 

the measurement noise is distributed as U{-€n,€n), and the input signal amplitude is A, then 

the mean square values of the signal and the noise are 

The SNR will be about 40dB for e„ = 0.01 and A = 1. The excitation signal nonlinearity and 

the system nonlinearity are approximated by the second harmonic distortion, and the higher-

order distortions are neglected. The total harmonic distortion (THD) of the excitation input 

signal and the output signal were set to —40dB. 

The second-order lowpass notch filter used in Section 2.4.2.3 has been selected again to 

compare the frequency response measurement algorithms. Fig. 2.24 shows the statistics ob

tained from 100 independent measurements using the three measurement algorithms. The 

2 J 2 4 0-» = Y = y-

The input signal to noise ratio (SNR) is then defined as 

SNR lOlogio 

10[/ofifio(1.5) - 2logio{A/€n)]-
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mean and standard deviation of the measured real and imaginary part errors are shown in 

Fig 2.24 (a) and (b), respectively. The input signal to noise ratio (SNR) was set to 40dB. 

If it is assumed that the measurement noise is dominated by the quantization errors of A/D 

converters, then the 40dB SNR corresponds to about 7-bit resolution for dblV reference levels. 

The number of data sets was set to 64. The sampling period Ts was chosen to be 1.5sec. The 

simulation results show that the three algorithms have similar performance. More extensive 

simulation results can be found in [4]. For a simple test lowpass filter the LS methods have 

shown accurate measurement results at reasonable noise environment. For 40dB SNR and 

—40dB THD, the gain error less than 1% and the phase error less than 1° were obtained on 

the normalized frequency range from dc to 2 (rad/sec). Thus, these LS methods can be well 

applied to the s-domain system ID algorithms. It has been demonstrated that the M-GLS (or 

ICLS) algorithm can achieve good results for 1% measurement errors [9]. 

Although the FFT method has an advantage that it can measure a set of frequency response 

data with a smaller number of input-output samples using a frequency sweeping signal, for high 

frequency response measurement it requires higher cost for implementation of data acquisition 

systems than the LS methods because it needs a large number of consecutive samples. In 

contrast, the LS methods can be applicable with a low-cost data acquisition system as mentioned 

earlier. Since the LS method based on a first-order ARMA model which is a more general model, 

has more fiexibility associated with the number of data sets available from a fixed number of 

input-output samples as mentioned before, and it is more insensitive to the system nonlinearity 

which has been demonstrated in [4], it can be chosen to serve the second path < 3 > of the 

indirect continuous-time system identification method 3. 

2.4.5 Continuous-Time Filter Identification 

In the previous sections we have discussed LS methods associated with general system 

identification problems. It has been shown that for the continuous-time filter parameter iden

tification, there are two possible indirect methods, i.e., Method 2 and 3, where the problem 

can be decomposed into two simple steps. In Method 2, the generalized LS algorithm using 

an AR noise model can be used for the first step since its better accuracy and stability have 

been demonstrated for various actual noise models. The complex LS z-to-g transformation 

method can be chosen to serve for the second part of Method 2 because of its superiority to 

the well-known bilinear transformation in accuracy. Method 2 can thus accurately estimate the 

parameters of continuous-time filters if the test input is a persistently exciting signal. A linear 

system is said to be identifiable if the system is stable and the input test signal is persistently 
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exciting. If the input test signal is persistently exciting of order (n + m + 1), the matrix 

will be nonsingular and thus the least squares solution, 9 = does exist. The 

pseudo-random binary sequence (PRBS) or the linearly frequency sweeping signal can be used 

for a persistently exciting test input signal for the z-domain system ID which is the first step 

of Method 2. The PRBS which serves as a practical white noise signal can be generated from a 

shift register circuit cascaded with a lowpass filter [55]. The linearly frequency sweeping signal 

can be generated by applying a ramp or triangle signal to a voltage controlled oscillator circuit 

[40]. 

Although Method 2 is one of the promising approaches to the continuous-time filter iden

tification, it has a shortcoming when applied to the filters operating at high frequencies because 

its ^-domain system ID algorithm requires a large number of consecutive samples. Therefore, 

a fast and thus high-cost data acquisition circuit is required. For this reason. Method 3 will 

be selected as the continuous-time filter ID method. In Method 3 the frequency response data 

can be first measured using the LS algorithm based on a first-order ARMA model, LS(ARMA), 

and secondly, the parameters of the filter are estimated using the s-domain system ID algo

rithm, M-GLS or iterative complex least squares (ICLS) algorithm which has been shown to 

be robuster than other algorithms discussed in Section 2.4.2. In this section, the combination 

of the two parts of Method 3, LS(ARMA) and ICLS, are investigated. 

In Section 2.4.2, it has been demonstrated that the ICLS (or M-GLS) algorithm is very 

robust when the frequency response data are assumed to be corrupted with an independent 

uniform noise sequence for both real and imaginary parts. If the frequency response data are 

measured from the LS(ARMA) algorithm using input-output samples, the measurement noise 

may not be independent. To investigate this, the lowpass notch filter used in Section 2.4.2.3 is 

tested again. The identified results using the data measured by the LS(ARMA) algorithm are 

shown in Fig. 2.25 and Fig. 2.26. 

In this simulation the number of data sets for each frequency response measurement was 

set to 50, and the frequency response data length for the s-domain system ID was also set to 50. 

The THD of the input and output signals was set to —40dB. The SNR that has been defined 

in Section 2.4.4.4 was set to 40dB for Fig 2.25. The absolute mean (|E,[Oe,]|) and variance 

{Ea[dli] — El[Oei\) of estimation error computed from 100 independent identifications are shown 

in Fig. 2.25, where 0et's are the individual elements of the parameter estimation error vector 

Oe {0 - 0). Compared with the results of Fig. 2.18 which were obtained from ideal frequency 

response data corrupted with independent uniform noise, the bias reduction schemes, GLS or 

M-GLS, do not offer substantial improvements over the LS algorithm if the data obtained from 
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the frequency measurement algorithm are used. This is due to the correlation of the frequency 

response measurement errors. The mean squared estimation errors versus SNR 

are shown in Fig. 2.26. At low noise environment the accuracy improvement by the M-GLS 

algorithm over the LS algorithm is almost negligible. At high noise environment, however, the 

M-GLS still shows better estimation results than the LS algorithm. 

Fig. 2.25 shows that the system ID method using the LS(ARMA) and ICLS algorithms can 

give very accurate identification results with a medium resolution A/D converter (SNR=40dB) 

and an inexpensive excitation system (THD=—40dB). For example, the sample mean and 

variation of 100 estimation errors are 0.036% and 28.8 ppm, respectively, for the parameter 

62 of which the ideal value is given in equation (2.41). Since tuning accuracy depends on the 

ID accuracy, tuned filters could maintain the ID accuracy if filter adjustments were performed 

correctly. However, the tuning accuracy will be degraded by the limited resolution of the filter 

control circuit (D/A converters) and the filter parasitic effects. 

So far, the parasitic effects associated with the system to be identified has been neglected 

so that the order of the system to be identified and the order of the model have been the same. 

However, the actual continuous-time filter usually has a higher order due to the parasitic poles 

and zeros as discussed in Section 2.3. In our case, the ID problem of the continuous-time filters 

is thus to identify the over-ordered system with a reduced-order model because the system ID 

model should have the same order as the desired one for a simple filter adjustment procedure 

as mentioned before. Note that zero error in ID is not possible, and accuracy degradation is 

expected because the ID is now approximating the over-ordered system. The accuracy degrada

tion can be avoided if a higher-order model is used for identification of the over-ordered system. 

Actually, it has been found from simulations that adding one more pole to the ideal model 

leads to much better ID results. However, increasing the order of the system ID model will 

result in a much complicated filter tuning/adjustment procedure due to loss of the independent 

adjustability of the filter transfer function coefficients. Although they are complicated, there 

may exist many ways to map the more accurate ID results obtained by using a higher-order 

model to the control parameter values required for filter adjustment. However, we will not deal 

with this approach here and will use ideal system ID models in order to maintain the filter 

adjustment procedure very simple. 

To investigate the effects of the over-ordering problem on the ID accuracy, the actual over-

ordered 4th-order notch filter has been identified using an ideal 2nd-order model. The gain 

and phase responses of the ideal 2nd-order filter and the actual over-ordered 4th-order filter are 

depicted in Fig. 2.27, where the over-ordering factor w^/wp is 0.04. 
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Figure 2.27: (continued) (c) Phase responses 

With the same conditions as before, the frequency responses measured from the LS(ARMA) 

method and the identified responses from the M-GLS algorithm based upon the measured data 

are also shown in the figure. Even with a significant noisy environment SNR=20dB, the ICLS 

algorithm along with the LS(ARMA) algorithm can identify the over-ordered system with a 

good accuracy using a lower-order model although it can be seen in Fig. 2.28 that the ID 

accuracy is degraded as the over-ordering factor increases. 

The reason why a 2nd-order model can approximate an over-ordered 4th-order system 

accurately as shown in the above simulation results can be analyzed as follows. The 4th-order 

system which is an over-ordered one of the ideal 2nd-order system due to over-ordering effects 

addressed in Section 2.3 has parasitic poles typically at much higher frequencies than the system 

pole frequencies, so the deviations of the system responses from the ideal responses are not 

severe. Even in the presence of severe deviations due to high over-ordering effects, the iterative 

complex least squares algorithm can identify the over-ordered system with a good accuracy 

using an ideal low-order model. The reason seems to be that the ID model has full degrees 

of freedoms for system ID, i.e., for a second-order case five coefficients can be used to identify 

the over-ordered system, but most filter types except for allpass filters have missing terms 
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in the numerator polynomial of their transfer functions. Therefore the identified coefficients 

corresponding to the missing terms help to compensate for the errors due to over-ordering 

effects. For example, the ideal transfer function of a 2nd-order bandpass filter does not contain 

the constant and terms in the numerator, but the actual 4th or higher order system will be 

identified with a 2nd-order model which has both constant and terms, so these terms can be 

used for approximating the higher-order system. Thus, this system ID method can be simply 

applied to our tuning scheme even for higher-frequency and high-Q applications. 

The digitally programmable continuous-time filter under test, however, does not offer the 

adjustability of term in the numerator, so the model for system ID will have only 4 degrees of 

freedom. Moreover, for a bandpass filter only 3 degrees of freedom can be used to identify the 

over-ordered system because the constant term of the numerator does not have adjustability for 

a small value due to the restricted Çm adjustable range of the programmable filter . This will 

degrade the system ID results. To investigate this problem the over-ordered 4th-order bandpass 

filter with the over-ordering factor of 0.1 has been identified using two second-order models: a 

5 degree-of-freedom (DOF) model and a 3 degree-of-freedom model without the term and 

the constant term in the numerator. The identified results are shown in Fig. 2.29. It can be 

seen in the magnified plots that the identification using a 3 DOF model gives degraded results. 

The degradation can not be improved even with noiseless measurements because it is mainly 

due to the model error. 

2.5 Adjustment 

In the previous section, various system ID methods have been discussed which estimate the 

continuous-time filter model using time-domain input-output samples. It has been shown that 

the combination of the a-domain ID algorithm, ICLS, and the frequency response measurement 

algorithm, LS(ARMA), can serve as a good continuous-time filter ID method even in the pres

ence of parasitics. Now, the remaining part of the tuning scheme is the filter adjustment using 

the identified results as shown in Fig. 2.1. The procedure of obtaining the component correc

tion vector AG can be very simple thanks to the independent or sequential transfer function 

coefficient adjustability of the digitally programmable continuous-time filter. 

2.5.1 Tuning Algorithm 

The rudiment of the adjustment or tuning algorithm is to estimate the process dependent 

parameters of the OTAs based upon system ID results and to determine the control parameter 
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values for filter adjustment. In the digitally programmable continuous-time filter, the linearized 

OTA proposed by Nedungadi [42] was used for the input transconductance stage to achieve 

better linearity [39]. The schematic diagram of the OTA is shown in Fig. 2.30. 

From [42], the control mechanism relating the OTA transconductance gain Çmi to its 

control voltage Vd and current mirror gain Mi for i = 1,...,5, is characterized by the linear 

equation 

QmiiVci, Mi) = 2^l^{Vci - - VTi)Mi 

where ki and ki, are the process dependent constants corresponding to input pair transistors 

and bias transistors respectively, Vn is threshold voltage. Mi is the controllable output stage 

mirror gain, and Vd is the tail voltage which is the output of a D/A converter. The equation 

can be rewritten as, 

9miiVci, Mi) = Mimi{ki, ki,)[Vci + n,(Vr,)] (2.53) 

where 

mi{ki,kb) = 2)j(2.54) 

niiVn) = -(y«. + FT.) (2.55) 

The rui and n; are the process dependent parameters and the Vd and M,- are the control 

parameters for filter tuning. The OTA tail bias voltage Vd is used for smaller (fine) adjustment 

while the output current mirror gain Mi is used for more significant (coarse) adjustment. Thus, 

the transconductance gmi oiVth OTA of each biquad can be controlled by changing Vd and M,-. 

The basic idea of the tuning algorithm is to calculate the control parameters Vd and M,- for 

filter adjustment such that the identified gmi of each OTA becomes close to its design (nominal) 

value. The identified gmi of each OTA can be obtained from identified coefficients through the 

relations (2.4) to (2.7). 

The tuning procedure is divided into three parts: initial implementation, first iteration, 

and subsequent iterations. The whole tuning procedure flow chart is shown in Fig. 2.31. In 

the initial implementation, the initial parameters m, and n; for i = 1,2,.. .,5 of each biquad 

are set to their design values, and the initial control parameters Vd and M,- are calculated. 

These control parameter values are used for initial implementation of the filter. Each iteration 

consists of four steps as follows: 

1. System identification using the system ID method 

2. Estimation of process parameters m, and n,- from the identified transfer function coeffi

cients 
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Table 2.2: Expressions for and v}!'^ 

JïT 

(4°Vv/^)g 

ww )̂ 

a^C 
MWfvW+nW) 

,(0) 

,(0) 

,(0) 

,(0) 

(6i-)->/5^C _ ^(&) 

(fc) 

3. Calculation of control parameters Vd and Mi from the estimated mi and », 

4. Adjustment using the obtained control parameters 

The estimation formulas of m,- and n, for i = 1,3,4,5 are summarized in Table 2.2 and 2.3 

with special conditions Bbp = 1, and Bip = 0. It is assumed that Ce = Cr = C and gm2 = 9m3, 

so the expressions for mg and mg are the same as those for ma and 713. At each iteration the 

control voltages can be calculated by using the equations shown in Table 2.2. If the control 

voltage Vci exceeds a specified range, the current mirror gain M, should be adjusted to keep 

the control voltage within the controllable range. 

In the tables, the foUowings are should be noticed: 

• aQ'\a[''\b^\ and b[''^ : identified transfer function coefficients at (k+iyth iteration 

• 00,01,60, and 61 : design (ideal) transfer function coefficients 

• V^l'^ : control voltage of Çmi at Vth iteration 

• : current mirror gain of Qmi at k'f/i iteration 

• and C : design values 

• pi = fc — 1 and p2 = k — 2 
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Figure 2.31: Tuning procedure flow chart 
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Table 2.3: Expressions for and nj'^^ 

i 

1 

3 

4 y(PU_y(p2) 
•^04 *^c4 

5 y'(pl)_yfp2) 
*^c5 

i 

1 1 
-MC') 

3 

4 4 

5 
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The following is a detailed procedure to control Qms associated with adjusting the coeiRcient 

ai of each biquad. 

1. Set the initial control parameter Çms and C7(= C) to their design values. From (2.54) 

and (2.55), the parameters and ng°^ at the first iteration are given by 

„(0) ^ 

4" = -(F„ + V4?) 

where and are the nominal values. Also, set the initial current 

mirror gain to a proper value so that it may not exceed the specified range in which 

the good linearity of the transconductance is kept. Then, from (2.4) and (2.53), the 

control voltage at the initial implementation becomes, 

(0) _ âiC _ (0) 

where C and cTi are the nominal values. 

2. Obtain the identified coefficient from system identification of the physical filter. 

3. At the first iteration, it wiU be assumed that = rig"^ since we have only one equation 

for two unknowns. From (2.4) and (2.53), 

Ci = —mgM5(%;5 + 7*5 ) (2.56) 

Thus, we may approximate the estimate for ms by 

(1) _ ml ' = 

4. Calculate the control parameters Vcs and Ms from 

and test if exceeds the specified range. If it does, then calculate new and 

5. Obtain the identified coefficient from identification of the actual filter with the up

dated control voltages and mirror gains. 
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6. To obtain and observe from (refetad4) that 

«1°^ = + ns) 

4'^ = ^msMiVis^ + ns) 

Solving these two equations simultaneously, obtain the new estimates of and ns. 

(2) _ 

(2) _ 

7. Calculate the new control parameters Vcs and Ms from 

(2) _ diC (2) 

and check again v}p, and obtain new and if necessary. 

8. Test whether the system is tuned and repeat the step 5, 6, and 7 until a tuned system is 

obtained. 

Actually, the similar procedures for gm\i9m3i and gmz are performed simultaneously. If the 

system model is ideal, this algorithm will converge after two iterations. In reality each OTA has 

parasitic poles and zeros which make the actual systems have over-ordered transfer functions. 

Thus, more iterations are needed to get better results. It can be seen that the computational 

requirement of this adjustment algorithm is very simple. 

2.5.2 Tuning Simulation Examples 

To investigate the performance of the adjustment/tuning algorithm, several sample filters 

were tuned by simulation. In the tuning simulation, the following nonidealities were considered: 

measurement error (mra%), parameter variation {p%)i and over-ordering factor (w^/wp). The 

manufacturing process parameter variations were simulated with uniform random values of 

±p%. Frequency domain additive measurement errors of ±m7i% with uniform distribution were 

directly fed to the a-domain system ID algorithm. Thus, the frequency response measurement 

algorithm was not used in this simulation. For every simulation, 50 noisy data obtained at 

equally spaced frequency points were used for the system identification. The iterative complex 
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least squares (ICLS) method was performed with the iteration limit set to 10. The iteration limit 

for tuning was also set to 10, and the filter is considered to be tuned if all the control voltages 

(fine adjustments) are within 9 bit accuracy with respect to the previous control voltages. 

2.5.2.1 Over-ordering effects In order to evaluate the effect of the over-ordering 

problem on this tuning algorithm, a 6th-order elliptic lowpass filter which has a normalized 

cutoff frequency at l(rad/sec) and 0.5dB passband ripple was tuned. It consists of three second-

order lowpass notch (LPN) filters. Its transfer function is given by 

Tis) = n 

where 

i A-ii Aoi BQ{ Wo Qp 

1 0.933855 0.611899 4.36790 0.7822 0.8376 

2 0.156221 0.934830 1.19243 0.9669 6.1891 

3 0.017576 0.990620 1.02486 0.9952 56.628 

Three LPN biquads were tuned separately to tune the 6th-order elliptic filter. The tuning results 

with 1% measurement error and 5% parameter variation and various over-ordering factors are 

shown in Table 2.4, Fig. 2.32 and Fig. 2.33. 

For the third LPN filter, predistortion was performed for every over-ordering case because 

the filter has very high design Q of 56, while for the first LPN filter no predistortion was 

performed due to its low Q. From the results it can be seen that this tuning algorithm converges 

fast and attains good accuracy in the presence of over-ordering (up to w^/wp = 0.1) effects. 

However, the over-ordering factor w^/wp = 0.2 leads to a relatively big ripple error at the 

transition region. The simulation results show that the tuning algorithm can handle very 

high over-ordering factors up to 0.2, so it can be well applicable to high-frequency and high-Q 

applications. This kind of over-ordering effects were scarcely handled in the tuning literature. 

2.5.2.2 Parameter variations To evaluate the effect of measurement errors and 

parameter variations on this tuning algorithm, a simple second-order lowpass filter was chosen 

Its transfer function is 
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Tuning results with various parameter variations, 1% measurement error and over-ordering 

factor Wo/Wp = 0.1 are shown in Table 2.5, and Fig. 2.34. Even when 30% parameter variations 

were considered, the tuned filter had a maximum gain (Amax) within 0.35% of the desired 

maximum gain and a resonant frequency witliin 0.01% of the desired frequency. It can thus be 

seen that this algorithm is not sensitive to the effect of parameter variations. 

2.5.2.3 Measurement errors Tuning results with various measurement errors, 5% 

parameter variation and over-ordering factor = 0.1 are shown in Table 2.6 and Fig. 2.35. 

Even in the presence of high measurement errors (up to 5%), this tuning algorithm attained 

good accuracy and fast convergence rate. However, 10% measurement error resulted in a poor 

tuned state. Actually, in this case, the tuning algorithm had not converged but was stopped by 

the iteration limit of ten. This phenomenon is caused by the fact that this model-based tuning 

algorithm heavily depends on the results of the system identification and the accuracy of the 

system identification is a function of the accuracy of measurements. 

2.5.3 Performance evaluation of the digital tuning scheme 

The adjustment algorithm presented in Section 2.5.1 was developed for the digitally pro

grammable continuous-time filter structure [39]. However, the tuning algorithm can be read

ily extendable to any kinds of digitally controllable filters. Most recently reported high-

frequency continuous-time filters contain OTA-C type integrators because of their inherently 

better high-frequency characteristics compared with other types of integrators such as active 

RC or MOSFET-C integrators of which the basic building circuits are conventional operational 

amplifiers. Most OTA structures [13]-[23],[68, 69] have some sort of mechanism for linear con

trol of their transconductance gain, and thus, these OTAs can be easily incorporated to build 

digitally programmable/tunable biquadratic structures. It has been shown in Section 2.4.5 that 

the biquadratic structure under test leads to degraded system ID results in the presence of sig

nificant parasitic effects because it does not offer the overall gain adjustability and small value 

adjustability of the constant term of the transfer function numerator polynomial. 

In this section a more robust biquadratic structure is tested to evaluate the performance of 

the digital tuning scheme more generally. Small value adjustability of the numerator constant 

term and the gain adjustability of the biquad are added to the biquadratic structure under test 

such that 5 degrees of freedom models can be used for identification of notch biquads and 4 

degrees of freedom models for lowpass or bandpass biquads. Many biquad structures satisfying 

these conditions may be possible. One simple example structure is depicted in Fig. 2.36. Its 
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Table 2.4: Tuning results of the 6th-order lowpaiss elliptic filter with w^/wp over-ordering 
factors (mn = 1.0%, p = 5.0%) 

LPNl LPN2 LPN3 6th-order Elliptic Filter 
No. of No. of No. of Passband 3dB band 

Wo/Wp iteration iteration iteration ripple (dB) error (%) 

0.01 2 2 2* 0.501 0.30 
0.05 5 6 4* 0.634 0.34 
0.1 6 4* 4* 0.556 0.32 
0.2 7 T 5* 1.357 0.60 

• Predistortion was performed 

Table 2.5: Tuning results of a simple lowpass filter with p% parameter variations 
(mn = 1.0%, Wo/Wp — 0.1) 

Parameter No. of DC Gain Max. Gain ^max Wo 
Variations (p) Iteration /lo (%) A.max (%) (%) (%) 

1% 7 0.005 0.27 0.13 0.10 
5% 9 0.002 0.79 0.44 0.80 

10% 4 0.232 0.32 0.02 0.60 
20% 4 0.096 0.10 0.27 0.10 
30% 6 0.937 0.35 0.72 0.01 

Table 2.6: Tuning results of a simple lowpass filter with mn% measurement errors 
(p = 5.0%, Wo/Wp = 0.1) 

Measurement No. of DC Gain Max. Gain ^max Wo 
Error {mn) Iteration ^(%) ^max (%) (%) (%) 

0.1% 7 0.186 0.31 0.30 0.4 
1% 9 0.002 0.79 0.44 0.8 
5% 7 0.331 1.18 0.30 0.4 

10% 10* 0.349 5.29 1.68 0.8 
• Iteration limit was exceeded 
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Figure 2.32: Tuning results of the 6th-order elliptic lowpass filter (a) Magnitude response 

(b) Phase response (Over-ordering factor w^/wp = 0.1, Measurement errors 
mn = 1%, and Parameter variations p = 5%) 
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Figure 2.33: Tuning results of the 6th-order elliptic lowpass filter (a) Magnitude response 
(b) Phase response (Over-ordering factor Wg/Wp = 0.2, Measurement errors 

mn = 1%, and Parameter variations p = 5%) 
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Figure 2.34: Tuning results of the simple second-order lowpass filter (a) Parameter varia
tions p = 1% (b) Parameter variations p = 30% (Over-ordering factor w^/wp 

= 0.1 and Measurement errors mn = 1%) 
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Figure 2.35: Tuning results of the simple second-order lowpass filter (a) Measurement 
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Wo/wp = 0.1 and Parameter variations p = 5%) 
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Figure 2.36: One example of the biquads which have the overall gain adjustability 

ideal transfer function is given by 

Small value adjustability can be easily achieved by modifying the OTA structure. For example, 

the OTA structures presented in [68],[69] have even negative gm adjustability by using cross-

coupled input stage or by connecting two simple OTAs in parallel. Using this structure, a 

6th-order elliptic filter is extensively simulated based upon the Monte-Carlo method. In this 

simulation the LS(ARMA) algorithm presented in Section 2.4.4 is also used to measure the 

frequency responses of the filter as shown in Fig. 2.37. Yield of tuned filters is also investigated 

to fully characterize the tuning scheme. 

2.5.3.1 Test circuit (6th-order elliptic lowpass filter) To test the whole tuning 

scheme shown in Fig. 2.37, a 6th-order elliptic lowpass filter has been chosen which has a 

normalized cutoff frequency of 1.0 (rad/sec), a passband ripple of 1.0 (dB), a stopband starting 

frequency of 1.5 (rad/sec), and a minimum stopband attenuation of 64.66 (dB). Its magnitude 

response is shown in Fig. 2.38. 

The 6th-order elliptic function 

T ( s )  =  K p L l l l ± h l ± h .  
s® -f .. . fll s Cto 
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Figure 2.37: Block diagram illustrating the whole tuning scheme 
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Figure 2.38: (a) Magnitude response of the 6th-order elliptic lowpass filter (b) Magnified 

passband plot 
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must be decomposed into three 2nd-order biquadratic functions 

According to the network decomposition theory [70], there are many different ways to do the 

decomposition depending upon the following degrees of freedom: 

• Pole-zero pairing 

• Gain distribution 

• Cascading sequence, 

and two possible criteria are 

• Maximum dynamic range and minimum inband loss 

• Minimum overall transmission sensitivity 

It is not possible to perform the decomposition such that both criteria are simultaneously 

satisfied. The first condition is thus selected since it is considered more important from a 

tuning point of view. To satisfy the first condition, voltage swing at each biquad input is as 

high as possible while the in-band losses are as low as possible. 

There are 6 possible combinations in pole-zero paring of the 6th-order function. Poles and 

zeros should be paired such that the magnitude response of each biquad is as flat as possible 

in the frequency range of interest. According to Lueder's method, poles and zeros should be 

paired such that 

where Ti^ax is maximum gain of biquad ; for w E [0, oo], and T,mm is minimum gain of biquad 

i for w G [0,1]. The pole-zero paring satisfying the above condition can be found using d-table 

and d-graph as in [70]. In general the rule of thumb is to combine the high-Q poles with the 

zeros lying closest to them. The pole-zero locations of the 6th-order elliptic filter are depicted 

in Fig. 2.39. After applying the Lender's method, we obtained the following pole-zero pairing: 

PI - ZOO, P2 — ^2, and p3 - zi which obeys the rule of thumb. 

Gain distribution and biquad sequence determination are also done from the viewpoints of 

minimizing individual biquad overdrive and maximizing the signal to noise ratio. The methods 

is minimized where 

\ Timin ) 
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Figure 2.39: Pole-zero locations of the 6th-order elliptic lowpass filter 

for these can be also found in [70]. After these procedure, the finally obtained biquad transfer 

function coefiicients are 

i Ki Bhi hi bot hi boi Wo,' Qi 

1 0.14218 1 0 4.230449 0.348604 0.611825 0.7822 2.2438 

2 0.17511 1 0 2.381154 0.100900 0.994942 0.9975 9.8857 

3 0.45618 0 0 1.0 0.710041 0.187943 0.4335 0.6106 

where it can be seen that the filter consists of two lowpass notch biquads and one lowpeiss biquad. 

Their magnitude responses are shown in Fig. 2.40. This kind of dynamic range optimized filter 

function can not be implemented with the digitally programmable continuous-time filter under 

test due to unadjustability of the biquad gains A', 's. 

2.5.3.2 Simulation results and tuning yield investigation The 6th-order 

elliptic lowpass filters have been tuned using the procedure shown in Fig. 2.37. The mean 

and standard deviation of gain error computed from 100 sample filters before tuning and after 

tuning are depicted in Fig. 2.41 (a), (b), (c) and (d), respectively, for three different over-

ordering factors. 
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Figure 2.40; Dynamic range optimized 6th-order elliptic lowpass filter. Magnitude re
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Figure 2.41: Effects of the over-ordering factor (w^/wp) on the tuning accuracy, (a) Mean 
and (b) Standard deviation of untuned gain error computed from 100 inde
pendent untuned and tuned filters (SNR=40dB, THD=—40dB, p = 20%) 



www.manaraa.com

91 

0.02 

-0.02 

-0.04 

-0.06 

1 1 - 1 1 1 

— — 

\ 

Wo/Wp = 0.001 
Wo/Wp = 0.01 
Wo/Wp = 0.04 

1 1 1 1 1 

0.2 0.4 0.6 0.8 
Frequency (rad/sec) 

1.2 

(c) 

0.08 

0.06 

0.04 

0.02 

1 1 - 1 • 
Wo/Wp = 0.001 

1 1 

Wo/Wp = 0.01 
Wo/Wp = 0.04 

_—/ 

1 1 1 1 1 

0.2 0.4 0.6 0.8 
Frequency (rad/sec) 

1.2 

(d) 

Figure 2.41: (continued) (c) Mean and (d) Standard deviation of tuned gain error 
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In this simulation, somewhat pessimistic conditions were chosen to simulate worse cases 

than realistic. The following nonideality factors were used. 

« Component variation p=20% 

• Signal-to-noise ratio SNR=40dB 

• Total harmonic distortion THD=—40dB 

The process variations on the capacitances and the OTA transconductance gains were simulated 

with 20% multiplicative uniform random numbers. The SNR is the ratio of the input excitation 

signal to additive uniform random noise as defined in Section 2.4.4.4. The input and output 

signal samples were added to uniformly distributed random numbers. The nonlinearity of 

input excitation signals and the filter nonlinearity were approximated with the second harmonic 

distortion. The total harmonic distortion of the input and out signals was set to —40dB. The 

iteration limit for tuning was set to 20, and the filter is considered to be tuned if aU the control 

voltages are within 10 bit accuracy. 

The results indicate that the digital tuning scheme can reduce the standard deviation of 

gain error by a factor of 100. It should be noted that the standard deviation increases with the 

over-ordering factor. This is primarily due to the degraded system ID accuracy in the presence 

of significant parasitics as discussed in earlier sections. The scheme, however, still shows good 

accuracy with an over-ordering factor (w^/wp) as high as 0.04. The plots shown in Fig. 2.41 

were computed from individual frequency points, and thus, the mean of gain error plot is just 

the ensemble average of the gain responses of 100 sample filters. With these plots, it is not 

possible to fully investigate the statistical characteristics of the tuned filters. 

To evaluate the performance of the tuning scheme more accurately and to investigate the 

tuning yield, the window specifications shown in Fig. 2.42 are considered. Fig. 2.42 (a) exhibits 

the window specification of the ideal 6th-order elliptic lowpass filter. If an error bound is given 

as shown in Fig. 2.42 (b) such that a sample filter which has a gain response within the error 

bound is regarded as a tuned or satisfiable filter, then histograms of the tuned filters can be 

obtained. The error bound e in the passband is defined as a percentage with respect to the 

passband ripple (l.OdB) as shown in Fig. 2.42. Thus, the filters of which the gain responses in 

the passband are between e/lOO (dB) and —(1 -t- e/100) (dB) are considered to have an error 

bound e in the passband. The error bound is defined differently in the stopband as a percentage 

with respect to the stopband attenuation (64.66dB) divided by 10. Thus, the filters which have 

stopband gains less than -64.66 -t- 6.466e/100 (dB) have an error bound e in the stopband. 
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The obtained histograms of the tuned filters are shown in Fig. 2.43, 2.44, and 2.45 for 

three different over-ordering factors. Each figure contains three histogram plots. The first and 

second plots were obtained by checking the passband error bound only and the stopband only, 

respectively. The last one is the histogram taking into account the entire frequency range. 

From these plots we can more clearly analyze the statistical characteristics of the filters tuned 

by the digital tuning scheme. If the allowable error bound e is set to 10, i.e., if the allowable 

passband ripple deviation from the ideal ripple (l.OdB) is O.ldB and the allowable stopband 

deviation from the ideal stopband attenuation (64.66dB) is 0.6466dB, then the tuning yields 

are 100%, 99%, and 92% for w^/wp = 0.001, 0.01, and 0.04, respectively. This indicates that 

if a tighter one than the desired window specification is used for initial filter implementation 

and tuning, then most tuned filters are expected to satisfy the desired window specification. It 

can be also seen from the plots that the error bound density looks similar to a Rayleigh or a 

Gamma distribution. 

2.5.4 Tuning Experimental Results 

The digital tuning scheme has been applied to tune several sample filters. The linear 

transfer functions were implemented with the digitally programmable monolithic continuous-

time filter discussed in Section 2.3 which has only 6 bit resolution for the fine control. The 

block diagram of the experimental setup is shown in Fig. 2.46. 

A workstation HP 9000/300 was used as the tuning host, and all instruments were con

nected on the HP-IB and were controlled by the tuning host. Measurements were made by the 

HP 54111D digitizing oscilloscope, which has programmable built-in commands for automatic 

measurements and has 6 bit single-shot accuracy and 8 bit accuracy with averaging. Excitation 

signals were generated from a HP 3325A programmable function generator. 

First, a simple 2nd-order lowpass filter which has a resonant frequency of 500 kHz was 

implemented and tuned. Its normalized transfer function is given in (2.57). Gain and phase 

responses were measured at 50 equally spaced frequency points from dc to 600 kHz for each 

iteration and used for system identification. Fig. 2.47 shows that the tuned filter has a fre

quency response close to the desired one while the initially implemented filter has an erroneous 

frequency response. The entire tuning process took 9 iterations. 

Another tuning experimental result is shown in Fig. 2.48. The filter was tuned to a 2nd-

order bandpass filter which has a resonant frequency of 100 KHz, a Q of 10 and a maximum 

gain of 1. After 7 iterations, the tuned filter had a resonant frequency of 99.7 KHz, a Q of 9.97 

and a maximum gain of 0.995. These data were calculated from the identified transfer function 



www.manaraa.com

95 

1 1 !  !  ! ! J. ' 
i j i i i PaBsband —r— 

1 
1 i  i  i i  i  1 
1 1 i  i  i 1 ! 
M -11,, 1 i  ! i  1 
1 1 1 1 1 1 1 

0 2 4 6 8 10 12 14 
Error bound (e) 

(a) 

! — ' 
! !  ! 1 !  J .  ! 

! i  1 i  ;  oK^Dana —;— 

i 

: 
i  

i  !  i !  !  i 

:  1 1 :  1 

i j . .]  1 i i  i 1 1 1 i  1 

6 8 
Eiror bound (e) 

10 12 14 

(b) 

! ! I ! ! „ ! 

1 i j 1 j '0™ -|— 

. 4...LL] 1 1 1 i 

! . .  j  . . . . i . . .  i 
i 1 1 i i 

6 8 
Error bound (e) 

10 12 14 

(c) 

Figure 2.43: Histograms of 100 tuned 6th-order elliptic lowpass filters for Wg/Wp = 0.001 

(a) Passband, (b) Stopband, and (c) Entire range 
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Figure 2.46: Block diagram of the tuning experimental setup 

of the tuned filter. 

2.6 Conclusions 

In this chapter a digital tuning scheme for digitally programmable continuous-time fil

ters has been described. To simplify the tuning problem, the tuning procedure is partitioned 

into two phases: system identification and adjustment. Various methods for continuous-time 

filter identification have been discussed. Two indirect methods, time-domain approaches and 

frequency-domain approaches have been investigated where the system ID problem is simplified 

by decomposing it into two steps. 

In the time-domain approaches, the continuous-time filters are identified by first esti

mating discrete-time models using z-domain system ID algorithms and then obtaining equiv

alent continuous-time models using z-to-g transformation methods. It has been demonstrated 

through extensive simulations that among various LS z-domain methods, the generalized LS al

gorithm based on an AR noise model shows better performance for various noise characteristics 

than any others. 

Very accurate domain transformation (a-to-z and z-to-s) methods based on the iterative 

complex LS algorithm have been presented and compared with the well known bilinear trans-
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formation method. It has been shown that both complex LS transformation methods provide 

improvement in accuracy by a factor of 10 to 100 compared with the bilinear method. The com

plex LS a-to-z method can thus be well applied with improved accuracy to the digital filter and 

control system design applications. Although the time-domain approach, i.e., the GLS(AR) 

algorithm along with the complex 2-to-s transformation method, can be well applied to the 

continuous-time filter ID, it requires high-performance and high-cost data acquisition circuits 

for high-frequency applications due to the requirement of large number of consecutive samples, 

which makes the frequency-domain approaches preferable in the digital tuning. 

In the frequency-domain approaches, the frequency responses of the filter to be identified 

are first measured from frequency response measurement algorithms and the measured data are 

then fed to s-domain system ID algorithms. Frequency response measurement methods based 

upon the FFT algorithm and the LS algorithms have been comparatively investigated. It has 

been shown that the LS algorithms based on low-order models such as a Ist-order AR model 

and a Ist-order ARMA model have similar performance to the FFT method while they can 

be utilized with lower-cost data acquisition circuits. Several s-domain system ID algorithms 

have been presented. It has been demonstrated that the iterative complex LS (ICLS) algorithm 

can reduce the bias existing in the ordinary complex LS algorithm. The combination of the 

ICLS s-domain system ID algorithm and the LS(ARMA) frequency response measurement 

algorithm can thus become a good frequency-domain approach for continuous-time system ID. 

Since actual filters are usually over-ordered due to parasitic effects, system ID should be robust 

in the presence of parasitics. It has been shown that the requirement can be decently satisfied 

by the frequency-domain approach. 

An adjustment algorithm tailored to the digitally programmable continuous-time filter 

structure under test has been proposed. Its basic idea is to calculate filter control parameters 

by estimating process dependent parameters using the system ID results. It is very simple and 

converges quickly. Extensive simulations demonstrated that the adjustment algorithm along 

with the system ID method can attain very good accuracy and high convergence rates for low-

frequency applications. It has also shown that the digital tuning scheme can be fairly well 

applicable to high-frequency and high-Q applications. Experimental results have demonstrated 

that the tuning scheme can be successfully applied to filter tuning with good accuracy. 

Since the adjustment algorithm completely relies on the system ID results, the tuning 

performance is highly affected by the system ID accuracy. Although the proposed system ID 

method is robust to some extent in the presence of high parasitic effects, its performance will 

be limited when the parasitic effects are getting more significant. This is primarily due to 
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that the s-domain system ID algorithm is a model-based one and the performance degradation 

stemming from model errors are inevitable. The extent of performance degradation due to 

model error is also strongly related to the biquad structure and the OTA transconductance 

gain adjustability. If a biquad has lack of adjustability as in the biquad structure discussed 

in Section 2.3, a reduced degrees-of-freedom model should be used for system ID which leads 

to increased model error. These kinds of model errors can be considerably reduced by using 

higher-order models for system ID. This will, however, lead to much complicated procedures 

for filter adjustment. 

The performance of the digital tuning scheme is degraded when the over-ordering eifects 

of the actual filter are very significant. However, simulation results have demonstrated that 

the tuning scheme can get considerably good accuracy in the presence of high over-ordering 

effects. Tuning simulation results of a 6th-order lowpass filter have shown that the tuning yields 

for O.ldB (about 1% error) passband error bound are 100% and 95% for over-ordering factors 

0.001 and 0.04, respectively. These results were obtained with 10 bit resolution of the control 

voltages (10 bit D/A converters) in somewhat pessimistic environment such as 20% process 

component variation, 40dB SNR which requires a medium resolution data acquisition system 

(an 8 bit A/D converter), and —40dB harmonic distorted input signals which can be generated 

from an inexpensive sinusoidal signal generator circuit. Thus, the tuning scheme can be used 

to practically build high-performance monolithic continuous-time filters. 

The parasitic effects can also be reduced by circuit techniques using excess phase com

pensation schemes and using very simple OTA structures where the parasitic poles and zeros 

lies at very high frequencies leading to reduced over-ordering effects. The performance of the 

digital tuning is limited by the accuracy of the excitation and data acquisition circuits and the 

resolution of the control circuit. This, however, implies paradoxically that the digital tuning 

has potential of very high precision at the expense of high cost. 

When the digital tuning scheme is applied to high-frequency and high-Ç applications, 

the predistortion technique discussed in Section 2.3 must be used at initial implementation 

to avoid oscillation. Since the technique using predistortion based on the estimation of the 

effective parasitic pole does not always result in stable initial implementation and the current 

digital tuning scheme does not guarantee the stability, one possible future work would be the 

development of methods such that the stability is guaranteed. 
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CHAPTER 3. NONIDEALITY CONSIDERATION FOR HIGH 

PRECISION AMPLIFIERS - ANALYSIS OF RANDOM 

COMMON-MODE REJECTION RATIO^ 

3.1 Introduction 

Numerous nonideal effects impact and generally degrade the performance of practical op-

amps. Three factors, finite gain, finite common-mode rejection ratio (CMRR), and nonzero 

offset, are the major sources which limit the high-precision low-frequency applications of am

plifiers. It is well known that precision applications require a high open-loop gain, a large 

common-mode rejection ratio and a low offset voltage but practical limitations force the de

signer to make tradeoff between these parameters. Because of the nonlinear relationship between 

these parameters and the performance parameters of interest, and because of the inherent sta

tistical nature of the offset voltage and CMRR, the relationship between these parameters and 

the performance of amplifiers is still not fuUy formulated, causing designers to still commit 

non-optimal designs to the foundry. For example, an infinite CMRR is often not optimal in 

the presence of a known finite open-loop gain of the op-amp. This research focuses on a rigor

ous formulation of the relationship between these parameters and the performance of precision 

finite-gain amplifiers. Simple mathematically tractable relationships between the finite gain, 

CMRR and offset voltage are developed and related to the overall performance of high precision 

finite gain amplifiers. 

The CMRR and offset are not totally deterministic but have both deterministic and random 

components. Unfortunately, the performance and yield of systems using integrated op-amps are 

often dominated by the random components. These random components which are primarily 

due to the device mismatch make it difficult to analyze the op-amp errors. The statistical 

characteristics of these parameters must be well understood to practically obtain high precision 

^ ©1993 IEEE. Reprinted, with permission, from IEEE Transactions on Circuits and Sys
tems Part I, vol. 40, no. 1, pp. 1-12, Jan. 1993. 
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performance. Several analyses of the random offset [71],[72] and the random CMRR [74]-[76] 

in differential amplifiers have been made, but these analyses do not focus on the mixed effects 

of these nonidealities on amplifier performance. The analyses of the random CMRR [74]-[76], 

made several decades ago, concentrated only on bipolar differential amplifiers. Moreover, they 

focused on the methods to increase the CMRR, not on the statistical characteristics of this 

parameter which play a key role in the performance of precision finite gain amplifiers. 

The impact of the CMRR may be best appreciated by reviewing the term itself. The 

term is widely used and has appeared in elementary electronics and instrumentation texts for 

many years [ll],[71]-[73]. For a single sample amplifier with differential input and single-ended 

output, the term is defined as 
^dn CMRR = ^ (3.1) 
"cm 

where Adm and Acm are the small signal differential-mode and common-mode gains respectively. 

Often it is expressed logarithmically rather than linearly. For the single sample amplifier, the 

CMRR is deterministic and can be readily measured in the laboratory. Of more importance 

than the CMRR of a single sample amplifier from an operational amplifier yield viewpoint, from 

a discrete systems designers viewpoint, and from an integrated systems designers viewpoint, is 

the CMRR of an amplifier architecture in a process. In this case, the common-mode gain which 

is ideally zero, becomes a key parameter in determining the CMRR. Since the common-mode 

gain invariably has a random component and a deterministic component, the same comment 

can be made about the CMRR. 

Unfortunately, a rigorous definition of the CMRR has not appeared in the literature. 

Consequently, designers have been basing designs on inaccurate models and/or expensive "worst 

case" simulations where it is often difficult to ascertain that the simulations are actually worst 

case. The impact has often resulted in designs that are overly conservative or designs that have 

substantially degraded performance. The rigorous definition of the CMRR, though seemingly 

straightforward, is complicated by the observation that the CMRR is actually a random variable 

that is ideally infinite and that has a probability density function. The probability density 

function of the CMRR is nonlinearly related to the probability density functions of several other 

random variables which characterize the transistors comprising the operational amplifiers. 

In this chapter, the CMRR and offset of CMOS op-amps are thoroughly investigated. 

Op-amp induced errors in precision finite gain amplifiers due to these nonideal effects are 

compositely analyzed. A model amplifier for these analyses is the two-stage CMOS op-amp 

shown in Fig. 3.1. The sample op-amp has been designed for high-speed and high-precision 

applications in a 2/z CMOS process. The device sizes and other performance parameters are 
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Table 3.1: Transistor size of the op-amp in Fig. 3.1 

Transistor W/L (/xm//xm) Transistor W/L { F I M / F M M )  

Ml 204/2 M2 204/2 
M3 75/3 M4 75/3 
M5 336/3 M6 100/2 
M7 250/2 M8 14/4 

VB 3.3 V Cc 2.39 pF 

Table 3.2: Performance of the op-amp in Fig. 3.1 

Specification Performance 

Settling Time (IV Step, 0.1%) 18.3 nS 
(2V Step, 5mV) 16.5 nS 

Systematic Input Offset Voltage 0.26 mV 
Open Loop Voltage Gain 819.4 (58.27 dB) 

Unit Gain EVequency (GB) 59 MHz 
Phase Margin 75° 

Output Voltage Swing -{-4.1V, -4.3V 
Power Dissipation 16.5 mW 

CMRR 62.5 dB 

shown in Table 3.1 and 3.2. Although the formulations focus on the two-stage amplifier of 

Fig. 3.1, the results are readily extendable to other op-amp architectures as well. 

3.2 Derivation of the Random and Deterministic CMRR 

Since in multistage amplifiers the CMRR of the first stage is usually an important factor 

in the overall CMRR, the CMRR of the two-stage CMOS op-amp will be dominated by the 

first stage. The small signal equivalent circuit of the differential stage in Fig. 3.1 is shown in 

Fig. 3.2, where go denotes the internal output conductance of the transistor used as a bias 

current source. Ideally Ml and M2 are matched as are M3 and M4. 

The small-signal output voltage is given by 

Uq = ^dm'^d "4" -^cm'^c (3.2) 

where 

n = Vinl - Vin2 (3.3) 
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V, = (3.4) 

The nodal equations at nodes (1), (2), and (3) are 

(ffml + gdl)%l — (gm3 + gdl)%2 = ffmlVinl 

(ffm2 + gd2)%l — — (ffd2 + 9d4)'0out = 9m2l^in2 (3 5) 

{9ml + 9m2 + 9dl + 9d2 + 9o)vi - - 9d2'0out = 9mlVinl + 9m2Vin2-

The model parameters are all random variables and can be expressed as 

9ml — 9mlN "I" 9mlRl "t" 9mlR2 

9m2 = 9m2N + 9m2Rl + 9m2R2 

9m3 = 9m3N + 9m3Rl + 9m3R2 

9m4 — 9m4N "f" 9m4Rl "t" 9m4R2 (3-6) 

9dl = 9dlN + 9dlRl + 9dlR2 

9d2 = 9d2N + 9d2Rl + 9d2R2 

9d4 = 9d4N + 9d4Rl + 9d4R2, 

where the N subscript denotes the nominal value which is deterministic, the R1 subscript denotes 

a random component that is process dependent but which does not vary from device to device 

on a wafer and where the R2 subscript denotes a random component that varies randomly from 

device to device on a wafer. It will be assumed that process dependent random variables (those 

with an R1 subscript) are totally correlated and identical for matched devices and that the 

wafer-level random variables (those with an R2 subscript) are identically distributed for ideally 

matched devices but statistically uncorrelated. 

Assuming that gmk » 9dh for aH k, I Ç. {1,2,3,4} and that Ml and M2 are nominally 

matched as are M3 and M4, we can obtain the expressions for the differential-mode gain Adm 

and the common-mode gain Acm, which are themselves random variables, 

. ^9m.i9ml 4" 9mii^9mlRl "t* 9m3R2 "t* 9m4R2) "t" ̂ 9mi9ml{.^9miRl H" 4" 9m2R2^ n\ 

Acm ^ % 7 1 r [-9di9mx9o + i29di9ml + go9ml)i9mlR2 " 9m2R2) 
29mi9ml{9di + 9dl) 

-i9mi9mli9dlR2 " 9d2R2) " 9o9mi{9mZR2 " 9m4R2)] , (3-8) 
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where 

9mi — 9mlN — 9m2N 

9miRl — 9m.lRl ~ 9m2Rl 

9ml — 9m3N — 9m4N 

9mlRl — 9mZR\ — 9miR\ (3 9) 

9di = 9dlN = 9d2N 

9diRl = 9dlRl = 9d2Rl 

9dl = 9d4N, 

where the i subscript denotes the input transistors Ml and M2, and the I subscript denotes the 

load transistors M3 and M4. 

Since the random component of the differential gain is very smaU compared to the deter

ministic component of the differential gain as can be seen in (3.7), the total differential-mode 

gain can be approximated by the deterministic gain only. Hence, 

Aim = 
^9mi9mli9di 4" 9dl) 

9mi 

9di + 9dl 
(3.10) 

The random component of the common-mode gain Is, however, comparable in magnitude to the 

deterministic component of the common-mode gain. The deterministic and random common-

mode gains, and can be defined so that 

A„n = Ag, + A^ (3.11) 

From (3.8), natural definitions of and A^ are 

9di9mi9o 

^9mi9mti9di 4" 9dl) 

9di9o (3.12) 
29mt{9di + 9dl) 

iR - i^9di9ml 4* 9o9ml)i9mlR2 ffm2R2} ^9mi9mli9dlR2 9d2R2) So9mii9m3R2 9m4R2) 

^9mi9ml{.9di "t" 9d{) 

^{9di + 9dl) 
9o 

!9m\R2 - 9m2R2 _ 9m3R2 " 9m'lR2\ 

9 mi 9ml 
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+2fird,-
/gmlfl2 -  gm2fi2 _ gdlR2 - 9d2R2 

\ 9mi 9di 
)] • (3.13) 

The ratios of the numerator of (3.13) are readily obtained in terms of the geometric and process 

device parameters. Details of this calculation appear in Section 3.8. Substituting (3.84), (3.85) 

and (3.88) into (3.13) gives 

1 iR -
2(5d,' + 9dl) 

fWlR2-W2R2 , L2R2-L1R2 , W3R2-W4R2 , L4R2-L3R2 
m + + W, + L, 

VT2fl2 - yT\R2 VTAR2 - VT3R2\ . „ ^Tlfl2 — ^T2fl2 
Vasi - Vtx VGSI - Vri ) Vasi - Vn , 

(3.14) 

The CMRR, defined in (3.1) where Acm is now a random variable, is itself a random 

variable. If we define 

CMRRl^ ----
^dm 

CMRR-^ = 4^, 

(3.15) 

(3.16) 

then we have 

C M R R  =  Adm 
A-cm 

A dm 

1 

CMRR^^ + CMRR-^ 

From (3.10), (3.12), and (3.14)-(3.16), the deterministic and random CMRRs are given by 

(3.17) 

CMRR^^ = - 9di9o 

^9mi9ml 
(3.18) 

and 

CMRR-^ = ( W \ R 2 - W 2 R 2  ,  L 2 R 2 -  L \ R 2  .  W : i R 2 - W A R 2  L 4 R 2  -  L 3 R 2  
— m— + — T<— + — w,— + — L,—  

V"r2fl2 - VTIR2 VT4R2 - VT3R2\ , 2 VTIR2 ~ VT2R2' 
Vosi - Vxi VGSI - VTI J Vast - Vn . 

(3.19) 

The deterministic CMRR given by (3.18) is as reported in [72] and [73]. From (3.19) we can 

see that the random component of the CMRR is caused by the nonzero output conductances of 



www.manaraa.com

109 

the bias current source and the input transistors as well as the mismatch of the paired devices. 

It can be seen that the effect due to go on the random CMRR are more dominant than that 

due to gdi. 

We are accustomed to characterizing the CMRR by a single number. Unfortunately, it can 

be seen from (3.17)-(3.19) that the CMRR is actually a random variable and, as such, charac

terized by a probability density function, not a single number. Nonetheless, it is instructive to 

develop an appreciation for what the CMRR of sample amplifiers will be and to determine how 

important the random part of the CMRR actually is. At this stage, we will calculate a pseudo 

worst case CMRR to compare the magnitude of the random and deterministic components of 

the CMRR. The probability density function itself will be explored in the next section. 

To calculate the pseudo worst case CMRR of the op-amp in Fig. 3.1 whose simulated 

parameter values are shown in Table 3.3, it is assumed that the wafer-level random component 

of L and W are normally distributed with zero mean and standard deviation 

o'L = fw = 0.014)tim. (3.20) 

We chose CTAL = ctaw = 0.02^m which is very reasonable choice as indicated in [79]. From the 

choice equation (20) was obtained. Since Ai = L1-L2 = L1R2-L2R2 and ctai, = Y^Ii +"'1,2' 

= ail = aL2 = f^AL/\/2 = 0.014/xm. It is also assumed that the corresponding random 

component of VT is normally distributed with zero mean and standard deviation 

where k=0.0236 V/zm. The k value was obtained based on the choice of CTAVT = §mV for 

LW=20 X 20/i7n^ according to the experimental data in [80]. 

We define the pseudo worst case CMRR to be the sample CMRR that would result if all 

random variables comprising the CMRR are in the direction that they add and at the 3cr value 

that would most degrade the sample CMRR. The corresponding a values for width, length and 

threshold voltage variations are summarized in Table 3.4. The deterministic CMRR calculated 

from (3.18) was 63.7dB which is close to the simulated one shown in Table 3.2. The pseudo 

worst case random CMRR calculated from (3.19) was 51.6dB which dominates the deterministic 

CMRR. The worst case total CMRR was thus 49.6dB. Since the random CMRR can have both 

positive and negative polarity, the total CMRR can be either improved or degraded by the 

random CMRR. 
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Table 3.3; Simulated parameter values of the op-amp in Fig. 3.1 IP gmi lUnAlV 
gdi 22.0iJ,A/V 

Vast — Vti 0.542F 

Table 3.4: Component <7 values for the op-amp in Fig. 3.1 

(Tl 0.014/i7n 
trvri 1.17mV 

aw 0.014^m 
crvy, 1.57my 

3.3 Statistical Characteristics of CMRR 

In this section the statistical characteristics of the random variable, CMRR as defined by 

(3.17), will be investigated. For notational convenience we will define 

c = CMRR 

-1 X = CMRRji 

d = CMRR-^ 

y = x + d 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

where the bold letters are used to denote random variables. From (3.17), the common-mode 

rejection ratio can be expressed as 

c = 1 1 1 

X -1- y ~ |y| 
(3.26) 

Equation (3.19) shows that the random variable x = CMRR"^ is a function of 12 random 

variables. These random variables are assumed to be independent and normally distributed 

with zero mean. 

^1R2, W2R2, W^3fl2, W4R2 

LIR2, L2R2, L3R2, L4R2 

yTlR2fVT2R2 

^T3H2, Vt4R2 

JV(0,a^) 

N{0,crl) 

^(0,4^,) 

;v(o,(TL). 

(3.27) 

Since x is the sum of 12 uncorrelated zero mean random variables, its mean will also be zero 

and its variance is equal to the sum of their variances. Thus, x is distributed as 

x~iV(0,cr2) (3.28) 
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where 

<7, = / l l \  2 2 / 1 , 1  
+ -777 Tf SO + 

^VT,91 
(VGSI - Vny {Vast - Vri)"^ 

( .29) 

Since d in (3.24) is deterministic, the random variable y = x + d is normally distributed with 

mean d and variance cr^, 

y ~ N { d , a l ) .  

The mean of |y| can be expressed as [77]. 

(3.30) 

where 

E{ |y| } = + 2dP (J -^  -  d 

-P(^) = / e-y^^'^dy. 
•y ZTT J—00 

(3.31) 

(3.32) 

The variance of |y| is then 

= E { \ y n - E H \ y \ }  

= E{y^}-E^{|y|} 

= yor{ y } + y } - |y| } 

= al  +  d'^  -  E^{ \y \ } .  (3.33) 

The probability density function, /c(c), of the common mode rejection ratio c can be 

obtained as follows. We want to determine the density of c in terms of the density of y. Since 

c>0, fc{c) = 0 Vc < 0. The equation c = |1| has two solutions for c > 0, 

1 yi = -, yz = (3.34) 

From the fundamental theorem of determining the density of a function of a random variable 

[77], the pdf of c is then 

f / x  _  f y j y i )  I  fyiVi) 
~ lff '(yi)r 15(2/2)1 

'• (î) ("ï). (3.35) 

where f y { y )  is the probabiUty density function of y, and g { y )  =  |^|. Since from (3.30) the pdf 

of y is 
(y - d)2^ 

(3.36) 
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Figure 3.3: Probability density curves of CMRR. c = C M R R  and r = |d/(7i| 

the pdf of the common-mode rejection ratio c becomes 

The probability density curves of c are shown in Fig. 3.3 where r = Id/ffxl and the 

CMRRp^ of the op-amp in Fig. 3.1 was used for d. These curves show that the pdf of c 

is similar to a Gaussian density function, but it is not symmetric, and the left side of the peak 

point goes to zero faster than the right side, so the mean lies at the right of the peak point. 

Fig. 3.3 also shows that for the op-amp of Fig. 3.1, the CMRR probability below 55dB is almost 

zero. Since the pdf of c is known, the mean and variance can be found from the expressions. 

If |y| is concentrated near its mean, then #{c} and can be approximated from the 

procedure of estimating the mean and variance of the functions of a random variable [77]. Let 

c = /(|yl) = and m = E{ |y|}. If f{\y\) is approximated by the first three terms of the 

Taylor series of f{\y\) with center m, then 

E { c ' ^ } - E ^ { c } .  

(3.38) 

(3.39) 

f { \ y \ )  -  f { m )  +  f ' { m ) i \ y \  ~  m )  +  ̂  ^^\\y\ - mf. (3.40) 
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Taking the expected values on (3.40), we obtain 

E{ /(|y|)} ̂  f im)  +  (E{ |y|^ (3.41) 

The approximated c } is thus 

The first-order estimate of is given by 

= |/'(m)lHl 

(^2{'|y|}) • 

The mean and variance of |y| are given in (3.31) and (3.33). Prom (3.37)-(3.39), (3.42), and 

(3.43) it is clear that the statistical characteristics of the common-mode rejection ratio, i.e., its 

mean, variance, and pdf, can be readily obtained if the variance of the process parameters are 

known. 

The statistical parameters of the CMRR of the sample op-amp in Fig. 3.1 were calculated 

using the derived equations and the data in Table 3.3 and 3.4. The approximated equations 

(3.42) and (3.43) were used to calculate E{ c} and (Tc. The calculated results are listed in 

Column A of Table 3.5. In order to investigate the correctness of these derived equations, 

200 Gaussian random numbers with zero mean and variance £r| were generated and used to 

calculate the corresponding parameters. From these sample data of the random variable x, the 

sample data of |y| and c can be obtained using (3.25) and (3.26). Their calculated mean and 

variance are shown in Column B of Table 3.5. The E{ |y| } and a\y\ from the derived equations 

are very close to those from the generated sample data, but the #{c} and CTC of Column A 

somewhat differ from those of Column B because the #{c} and CTC were calculated from the 

approximated equations (3.42) and (3.43). The histogram of the generated random data of x 

and the CMRR histogram are shown in Fig. 3.4 and Fig. 3.5. Since the r(= \d/(Tx\) of the 

sample op-amp in Fig. 3.1 is 2.2, Fig. 3.5 corresponds to the curve (r = 2.2) of Fig. 3.3. These 

two plots are very similar and support the model of equation (37) for the pdf of c. 

3.4 Definition of the CMRR for Processes 

The random offset of a CMOS amplifier has been defined for processes as three times its 

standard deviation. The reason is that the offset voltage has a Gaussian distribution, so 99.7% 
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Figure 3.4: Histogram of the 200 samples generated for the random variable x. 
X = CMRR^ 

/(c) 

Figure 3.5: Histogram of the 200 samples calculated from the data in Fig. 3.4 for the 
random variable c. c = CMRR 
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Table 3.5: The CMRR statistical characteristics of the op-amp in Fig. 3.1 calculated (A) 
from the derived equations (B) from the 200 generated random numbers 

A B 

d -6.55 X 10-4 
<TX 2.976 X 10-4 2.763 X 10-4 

E { \ y \ }  6.579 X 10-4 6.612 X 10-4 

^ \y \  2.797 X 10-4 2.691 X 10-4 
E { c }  1.795 X 10^ (65 dB) 2.017 X 10^ (66 dB) 

O-C 6.462 X 102 1.847 X 10^ 

of a sample satisfies the specification. Attention, however, has not been paid to the random 

CMRR of CMOS amplifiers, and no definition of the CMRR including random components has 

been made. Thus, the CMRR of CMOS op-amps for processes wiU be defined in this section. 

In the previous section we found the probability density function /c(c) of the CMRR. We 

win define the CMRR to the value of c such that 99.86% of a sample set has a CMRR greater 

than c. The choice of the 99.86% which is close to the 99.7% used in the definition of offset 

voltages discussed above will be discussed later. Integration of the pdf, /c(c), from c to infinity 

gives the following results: 
fOC 

f c{c)dc  =  P[a)  +  Pib)  - 1 (3.44) i: 
where 

a =  (3.45) 

b = Ul±A, (3.46) 

Since d is negative for the sample op-amp, we can rewrite a and b as 

1 , 
a — ; -{-

CTrrC ' " h  
(3.47) 

From equation (3.47) we can see that a is always greater than b by 2\d lax \ -  Thus, P{a)  is also 

always greater than P{b) because P{x) defined in (3.32) increases from 0.5 to 1.0 as a; increases 

from 0 to 00. 

Since we want to make 
f O O  

fc{c)dc  =  0.9986, (3.48) i: 
P(b)  should be very close to 1.0. This means that P{a)  is almost 1.0 because P{a)  is greater 

than P{b), and the maximum value of the function P{x) is 1.0. In most cases, \d/ax\ > 0.5, so 



www.manaraa.com

116 

a > 6 + 1. Therefore, under the condition of (3.48), the approximation 

(3.49) 

can be used. From the equation (3.48) and (3.49) we obtain 

(3.50) 

It now follows from tables for P{x) [78] that (3.50) will be satisfied provided 

(3.51) 

which can be expressed as 

(3.52) 

The reason why we chose a figure of 0.9986 in (3.48) was to obtain the integer 3 in (3.51). If 

we use (3CTX - (f)"^ as the CMRR specification in designing CMOS amplifiers, then 99.86% of 

a large sample will satisfy the specification. If d is positive, then P{b) is greater than P(a) and 

finally we have 

where d and cr^ are CMRR"^ and the standard deviation of CMRRJ^. The CMRR"^ and 

CMRRJ^ were defined in (3.15) and (3.16). The calculated CMRR for the sample op-amp in 

Fig. 3.1 was 56.2d5. Comparing with the density curve (r=2.2) in Fig. 3.3, we can see that the 

value 56.2dB is very reasonable. 

The CMRR definition for processes of (3.54) and the CMRR pdf of (3.37) are general 

for the op-amps whose deterministic and random components comparably contribute to the 

total CMRR. This case usually corresponds to the op-amps whose first stage has a single-ended 

output. If op-amps have a first stage with differential output, then their deterministic common-

mode gains are significantly reduced by the next stages [75]. In these cases the deterministic 

CMRR can be ignored, i.e., d ~ 0 and the above CMRR definition and the pdf should be 

changed. If d is nearly zero, then the pdf of the total CMRR is 

c = (3cT^ + d)-K 

Therefore, we can define the CMRR for processes as 

(3.53) 

CMRR = (3(T. 4- |d|)-i (3.54) 

(3.55) 
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The integration of the pdf from c to oo becomes 

= (3.56) 

The CMRR definition for processes is thus 

C M R R  = (3(Tx)"^ (3.57) 

where 99.73% of a sample set will be greater than (3crx)~^. The approximated mean and 

variance of the CMRR have the same equations (3.42) and (3.43), but the E{ |y|} and (T|y| 

should be modified as follows: 

E { \ y \ }  =  (3.58) 

a,y| = ^'(1-f) (3.59) 

3.5 Offset Analysis 

The offset voltage of an op-amp consists of two components: a deterministic offset and a 

random offset. The former results from improper dimensions and/or bias conditions, so it can 

be reduced to a very small value by careful design. The latter is due to the random errors in 

the fabrication process, i.e., mismatches in identically designed pairs of devices. For two-stage 

op-amps the first-stage will have a dominant effect on the offset. Therefore, the total input 

referred offset voltage of the two-stage op-amp will be highly affected by the first-stage random 

offset voltage. The input offset voltage. Vos, is defined as the differential input voltage that 

is required to make the differential output voltage exactly zero. If both input terminals are 

grounded, then the input referred offset voltage of the first stage can be expressed as 

Vos = Vo 
A 
AID 
9m 

AID 
'^luliVosi - Vn) 
VGSX - Vri Alp (3.60) 

2 Id ' 

where Vo is the first-stage output voltage, and A is the first-stage small-signal voltage gain. 

Since AID is mainly affected by the mismatch in the threshold voltage and the device 

width and length, and other factors can be ignored [79], we will consider only offsets in the VT 
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and W/L of the input differential pair (Ml and M2) and the current mirror pair (M3 and M4) 

in Fig. 3.1. The A/DI = Id\ — Id2 due to the mismatch of the input differential pair and the 

A/ijf = ID3 — IDA due to the mismatch of the current mirror pair are given from Section 3.8. 

Substituting (3.89) and (3.90) into (3.60), we have the input offset voltage due to the mismatch 

of the input differential pair, 

= + (3.61) 

and the input offset voltage due to the current mirror pair, 

Vosi - VTÎ , Vasi — Vn Vosi = + + 
2 V ' Li J Vgsi - Vri 

The total input referred offset will be the sum of these terms (3.61) and (3.62), 

Vos = Vosi + Vosi 

(Vt4R2 - VT3R2). (3.62) 

VGS« - VTI W\R2 — W2R2 ,  L2R2 — LiR2 W:iR2 — W4R2 
- H r r -

Wi Li W, 
,  L4R2 - LZR2 ,  2 {VT2R2 - VT-I R 2)  ,  2 {VT4R2 "  T^3A2)'  

H T 1 77 77 r 
Li Vasi — Vtî Vast — VTI 

(3.63) 

Since the offset voltage is the sum of 12 uncorrelated zero mean Gaussian random variables, it 

is also normally distributed with zero mean and standard deviation 

O'Vos = 
(VGSI - Vr«) 

15 + ' + ' W? 

(3.64) 
(VGSI - Vny {Vgsi  -  Vrif 

Therefore, the offset has a Gaussian density function with zero mean and variance (^VQS-

Assuming again the pseudo worst case as in Section 3.2, and using the data of Table 3.3 

and 3.4, the calculated pseudo worst case random offset of the sample op-amp in Fig. 3.1 is 27.9 

mV. The offset due to the {WjL) mismatch is 14.1 mV while the offset due to the Vj mismatch 

is 13.8 mV. It shows that the two factors give almost equal contribution to the random offset 

for the sample op-amp. 

3.6 Analysis of Op-amp Errors 

The gain of a unity-gain configured op-amp will be exactly one if the op-amp is ideal. 

Practical op-amps, however, don't offer the exact gain because of finite differential gains, finite 
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Table 3.6: Simulated gains of the op-amp in Fig. 3.6 

A 386.8 A' 386.6 

Ad 386.5 Ad 386.2 

Ac 0.4811 A: 0.4803 
C M R R  805.8 CMRR' 805.8 

Vos -20AnV 

common-mode rejection ratios, and nonzero offset voltages. In this section, the op-amp errors 

associated with these nonideal effects are analyzed. First, we define the different open-loop 

gains as shown in Fig. 3.7. We denote the finite open-loop gains of the op-amps which have 

different characteristics as follows: 

A : Finite CMRR and nonzero offset. 

Ad : Infinite CMRR and nonzero offset. 

A' : Finite CMRR and zero offset. 

: Infinite CMRR and zero offset. 

Simulated results of these gains for the op-amp in Fig. 3.6 obtained by neglecting statistical 

variations are shown in Table 3.6, where Ac, CMRR, a!^, and CMRR' are the common mode 

gains and the common mode rejection ratios of a nonzero offset op-amp and a zero offset op-

amp, respectively. The Vos is the input referred offset voltage. The op-amp in Fig. 3.6 differs 

from that in Fig. 3.1. It has a programmable current mirror instead of a simple one as a load 

of the differential input pair. The programmable current mirror can be used to compensate the 

offset voltage of the op-amp by adjusting the bias voltages VTl and/or VT2 as described in [6] 

and [81]. Basic concepts concerning the influence of each nonideal factor are briefly reviewed 

in the following three subsections. This is followed by discussions about the combined effects 

of the nonideal factors. 

3.6.1 Finite Open-loop Gain Effect 

Assuming that an op-amp has an infinite CMRR and a zero offset, the output voltage of 

the unity-gain configured op-amp will be 

Vo = (3.65) 
1 + 

If the pure differential gain A!^ is infinity, then the input % will be equal to the output Vo, 

but the output of a practical op-amp will be less than the input due to the finite open-loop 
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Figure 3.6: Two-stage CMOS operational amplifier with a programmable current mirror 

gain. Hence, the gain of a unity-gain configured op-amp will be always less than one under the 

assumption of infinite CMRR and zero offset. 

3.6.2 Finite CMRR Effect 

Considering a finite-CMRR and zero-offset op-amp which is equivalent to the op-amp in 

Fig. 3.7 (c) if the voltage source Vos is removed, the output of the op-amp will consist of two 

terms. 

Vo = 

^ + ViMj. (3.66) 
2CMRR' 

From these equations the op-amp can be modeled as in Fig. 3.7 (d) if the voltage source Vos 

in Fig. 3.7 (d) is removed, where 
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Figure 3.7: Equivalent models for a nonideal op-amp interpreting CMRR and offset and 
showing differently defined open-loop gains 
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If this op-amp is used for a unity-gain configuration, i.e., Vi = Vo and V2 = then the output 

voltage will be 

Vo = A^{Vi + ̂ cmrr' 

Hence, 

K = (3-69) 
2CMRR' ) 

It can be seen that an infinite CMRR reduces the equation (3.69) to (3.65). The equation 

(3.69) shows that the finite CMRR can compensate or overcompensate the gain decreasing 

effect due to the finite open-loop gain. 

3.6.3 Nonzero Offset Effect 

To investigate the effect of nonzero offset, we consider an nonzero-offset and infinite-CMRR 

which is equivalent to the op-amp in Fig. 3.7 (b) if the voltage source VCMRR is removed. The 

input referred offset voltage can be defined as the voltage applied at the positive input so that 

the voltage existing at the output becomes zero. Thus, the nonzero-offset and infinite-CMRR 

op-amp can be modeled as a voltage source Vos which is equivalent to the input offset voltage 

and a pure differential op-amp. This model is equivalent to Fig. 3.7 (d) if the voltage source 

VCMRR is removed. If this op-amp is used for a unity-gain configuration, then the output 

voltage will be 

Vo = Aj(Vi - Vos - Vo). (3.70) 

Hence, 

Vo = - Vos), (3.71) 
X + 

where it is well known that the offset voltage can be either positive or negative. 

3.6.4 Total Op-amp Error 

Now, the three effects are combined to derive the total op-amp error. The nonideal op-amp 

shown in Fig. 3.7 (a) can be modeled as two voltage sources, Vos and VCMRR, applied at the 

positive input and a pure differential op-amp which has an infinite CMRR and a zero offset 

voltage as shown in Fig. 3.7 (d). The output is then 

Vo = Ai{V2-Vos VC M R R - V \ )  
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If this op-amp is used for a unity-gain configuration as shown in Fig. 3.8 (a), then the output 

will be 

K = (3.73) 

The total output affected by a finite gain, a finite CMRR, and a nonzero offset is thus given by 

^ - Vos) (3.74) 
2 C M R R ' ^ + ^  

where ^ 

CMRR' = a 4^ = CMRR. (3.75) 
Ac Ac 

If the op-amp is used for a high-gain configuration as shown in Fig. 3.8 (b), then the output 

becomes 

where 

From the equation (3.74), it can be easily seen that the equations (3.71), (3.69), and (3.65) can 

be obtained by setting Vos = 0, CMRR' = oo, and both of them, respectively. 

From the equation (3.74) and the data given in Table 3.6, the calculated unity-gain con

figured output voltage of the op-amp in Fig. 3.6 is 0.9987V when Vf = l.OV while the simulated 

settling point of the output voltage is 0.9988V. This result shows that the equation (3.74) gives 

a very consistent result with the simulated one. In this example the random CMRR and the 

random offset have not been considered, but the correctness of the equation (3.74) has been 

demonstrated. In practical op-amps that kind of accuracy could not be obtained because of the 

random components described in the previous sections. With the assumption that Vos = 0, 

the output errors of the op-amp in Fig. 3.6 as a function of CMRR were calculated at different 

closed-loop gains, and the results are shown in Fig. 3.9. Even though the offset is zero and the 

CMRR is very high, the output error of the unity-gain configured op-amp (/? = 1) is about 

0.3% due to the finite open-loop gain. If the CMRR is 52dB, then the output error is nearly 

zero. This shows that the finite CMRR can reduce the error attributable to the finite gain 

as mentioned in Section 3.6.2. Prom the figure it can be also seen that high-gain configured 

op-amps show more errors than low-gain op-amps. 
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Figure 3.8: (a) Model of a unity-gain configured op-amp, (b) Model of a high-gain config
ured op-amp 
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Figure 3.9: Output error of the op-amp in Fig. 3.6 versus CMRR with /3 as a parameter. 
The offset voltage Vos = 0, and the open-loop gain A = 52dB 

If the offset of a given op-amp is compensated, and the compensated offset range is known, 

then the output error of the given op-amp can be analyzed from (3.74) and (3.76) because the 

CMRR range of the op-amp can be easily found from the pdf of the CMRR derived in Section 

3.3 or the CMRR definition in Section 3.4. Assuming that the offset is adjusted to less than 

ImV in magnitude, the output errors of the sample op-amp in Fig. 3.1 were analyzed. It was 

shown in Section IV that the sample op-amp in Fig. 3.1 had CMRR for the process of about 

56dB. Thus, the CMRR of most individual amplifiers will be greater than 56dB. Fig. 3.10 shows 

the output errors relative to 2V of the unity-gain configured sample op-amp as a function of 

the input VJ. From the 56dB CMRR curves in Fig. 3.10(a) and the lOOdB CMRR curves in 

Fig. 3.10(b), it can be seen that the output errors are less than 0.2% through the input range 

of —2V to +2V if the magnitude of the input offset is less than ImV. As expected, the 56dB 

CMRR curves show reduced errors compared to those of the lOOdB CMRR curves. 

The CMRR and offset of two-stage CMOS op-amps have been analyzed. Equations repre

senting their statistical characteristics have been derived. Using these equations, we can readily 

find the distribution, mean, and variance of the CMRR and oflfset if the process parameter vari

ations are given. The derived equations have shown that the CMRR pdf is similar to that of 

3.7 Conclusions 
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Figure 3.10: Output error of the op-amp in Fig. 3.1 versus % with Vos as a parameter. 
The open-loop gain A = 58dB, and CMRRs are: (a) 56dB, (b) lOOdB 
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a Gaussian random variable, but the mean is not zero and the symmetry is somewhat skewed, 

whereas the offset has a Gaussian distribution with zero mean. The CMRR for the processes 

has been defined. The CMRR is defined by (3(TI+ |d|)~^ for the op-amps which have both dom

inant deterministic and random CMRR so that 99.86% of a large sample can be greater than 

the defined value. For the op-amps whose deterministic CMRRs are nearly zero, (3CTX)~^ can be 

used for the definition of the CMRR, where 99.73% of a large sample satisfies the specification. 

The variable d is the ratio of the deterministic common-mode gain to the differential-mode 

gain and Cx is the standard deviation of the ratio of the random common-mode gain to the 

differential-mode gain. 

The op-amp errors due to finite open-loop gains, finite CMRRs, and nonzero offsets have 

been analyzed. A finite differential open-loop gain always makes the gain of a unity-gain 

configured op-amp less than one, and a finite CMRR can compensate for the error attributable 

to the finite open-loop gain unless it is too small. If the compensated offset range is known, 

then the op-amp error range can be found. 

3.8 Derivation of mismatch components 

If the channel-length modulation effect is ignored, the small-signal transconductance gains 

of the paired transistors Ml and M2 which act in the saturation region are given by 

Omi = 2K' (^^^^{Vasi-Vri) (3.78) 

9m2 = 2K' (^^^^iVGSi-VT2). (3.79) 

where K' = /iCox/2. Only mismatches in the Vr and WjL are considered. The similar 

expressions as in (3.6) for the random variables, L, IV, and VT, can be used as follows: 

L\ = Li + LiRi -}- Zrifi2, L2 = Li -t- i.-fli 4- L2R2 

Wi = Wi 4- Wim + ^iR2, W2 = Wi -f Wmi + W2R2 (3.80) 

Vt\ = Vn + Vr.fii + VTifl2, Vt2 = Vn + VnRi + Vt2R2I 

where Li, Wi, and Vn are the nominal values, and the subscript iEl and R2 are the same as 

before. 

Using these definitions, gmi can be approximated by ignoring higher order terms, 

9mi = 2K' ̂ ^  ^ ^ i R 2  )  ~  ~  y r i R x  -  VriH2) 
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n 7V' fir ^ \/l + (^<R1 + A ^Tim + VT\R2\ 
=  2 / f  ( ï r j  ( V a s ,  -  % )  ( . T T T Ï S h T w T F J  V  -  V a s , - V T ,  )  

A . + WiRg'X A Z'iRl + Zrinz^ A R2^ 
= 9-41 + W< J I' L: jl^- Vas,-Vr, ) 

A . Lim-\-LiR2 VTim + VTiR2\ to oi\ 
^ + w, 5 Vos,-Vr, )• '3 G1) 

By the same way, 

, WiRi + W2R2 Lmi + L2R2 VriRi + VT2R2\ oo\ 
= + g Vasi-Vr, )• (3 82) 

Hence, 
f W i R 2 - W 2 R 2  ,  L 2 R 2 - L 1 R 2  V T 2 H 2 - V t i H 2 \  f t  Q - } \  

g„,-g.2 = s^,[ + 2; + Vfesi-Vr, )• (3.83) 

Since g^i - 5m2 = 9miR2 - 9m2R2 from (3.6) and (3.9), 

9mlR2 - 9m2R2 ^IR2 " l^2R2 , L2R2 - L\R2 , Vr2fl2 " ̂ 1A2 OA\ 
= ^ 1 ; 1 TJ Ï7 • 

9mi Wi Li Vasi - VTi 

By the same procedure, 

9m3R2-9m4R2 M^3R2 - , L4R2 - L3R2 , VT4R2 - VTZR2 to ok\ 
w = ^ + U Vasi-VTi • 

Since the drain current lo and the output conductance gd can be expressed as 

ID = K ' {^^{Vg s - VT ?  (3.86) 

9d = A/n, (3.87) 

by the same method as above we can obtain 

9dlR2-9d2R2 W1R2-W2R2 , L2R2 - L\R2 , 2(Vr2fi2 " ̂ Tlfi2) m oo\ 
= ÎJT + ; 1 Î7 Î7 , (0.80; 

9di Wi Li Vasi - yn 

and 

IDI - ID2 WlR2 — W2R2 , L2R2 — LIR 2 2{VT2R2 "  ̂ 71^2)  /o  QOA 

—= m + L< + Vas, - Vr, '3 39' 

ID3 -  ID4 W3R2 -  WiR2 ,  L^R2 -  L3R2 ,  2 {VT4R2 -  VT3R2) /g  nn\  

—^ + L, + Vast - VT, (3.90) 

where Id = Idi = Idi-
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CHAPTER 4. AN AUTOMATIC OFFSET COMPENSATION SCHEME 

WITH PING-PONG CONTROL FOR CMOS OPERATIONAL 

AMPLIFIERS 

4.1 Introduction 

In many op-amp applications, offset cancellation or reduction is critical because an am

plifier input offset voltage limits the capability of the system. An offset voltage of lOmV to 

SOmF is typical for CMOS amplifiers. This can not be tolerated in many applications. For 

continuous-time integrated applications, a number of offset cancellation schemes have been re

ported [6],[81],[82]-[89]. Classical approaches to build low-offset MOS op-amps through device 

optimization are inefficient and have performance limitations. To obtain low offset, special 

circuit techniques are additionally required. Commonly used auto-zero techniques use analog 

switches and capacitors to implement low-offset amplifiers. The offset cancellation of these 

techniques is degraded by the charge injection due to the autozero switches. The schemes have 

50% duty cycles making them unsuitable for continuous-time applications. 

In this chapter a digital correction technique is presented to keep the noise of the offset 

compensation circuit small. The objective is to compensate for inherent matching-induced off

sets to achieve an op-amp with an offset voltage of less than 500/iV. The proposed architecture 

is available to achieve even much lower offsets. A ping-pong architecture is employed to ob

tain a 100% duty cycle. With the ping-pong control the op-amp is capable of continuous-time 

operation, yet the offset is periodically adjusted making the offset compensation scheme insen

sitive to time and temperature drift. The scheme also requires no off-chip components and no 

adjustments during manufacturing. This compensation is obtained at the expense of modest 

extra chip area for the digital correction circuit. The scheme is most practical, from an area 

viewpoint, for large chips where many low offset op-amps are required. In these applications 

the digital correction circuit can be used in common, thus the area required for the digital 

correction circuit comprises a small fraction of the total die area. 
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Figure 4.1: Programmable current mirror biased with (a) resistors (b) transistors 

4.2 Offset Tuning Strategy 

To adjust offset the programmable current mirror shown in Fig. 4.1 is used as the load 

of the differential input stage. The current mirror gain of the programmable current mirror in 

Fig. 4.1(a) is given by 

The current mirror gain can thus be adjusted or programmed by changing the resistor values. 

A variable resistor can be implemented with a MOS transistor which is biased to operate in a 

linear region as shown in Fig. 4.1(b). For the case of Vos « Vas - Vj, MRl and MR2 behave 

as linear resistors of value 

By changing the bias voltages VCB and VC, the resistor values and thus the current mirror 

gain can be adjusted. 

The adjustable range of the current mirror gain varies with the device sizes of MRl and 

MR2 as shown Fig. 4.2. A small WjL increases the resistor value and thus increases the 

adjustable range of the current mirror gain which is directly related to the offset adjustable 

range of the op-amp. Therefore, the sizes of MRl and MR2 should be selected according to the 

expected offset voltage range of the op-amp to be compensated. 

(4.1) 

(4.2) 
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Figure 4.2: Simulated current mirror gain adjustable range of the programmable current 
mirror 

These kinds of adjustable current mirrors have been used for auto-zero offset compensation 

[81],[83], where the op-amp output is fed back to a control port (e.g. VC) of a programmable 

current mirror during auto-zero periods, and the compensation voltage is stored on a capacitor 

to be utilized during signal processing periods. This analog scheme is very simple and requires 

small area, but its performance is limited by two factors. First, the compensation voltage 

is actually the op-amp output offset which is small but can not become zero. Secondly, the 

compensation voltage is contaminated by the charge injection of analog switches. Thus, there 

exists a lower limit of compensation at given supply voltages although it can be optimized by 

carefully selecting the op-amp gain and/or the gain from the control voltage to the op-amp 

output. The lower limit can be further reduced by using a compensation voltage generated 

from a digital correction circuit instead of one fed directly from the op-amp output. The 

digital scheme does not suffer from the charge injection problem. The performance of digital 

compensation is limited mainly by the resolution of the control voltages, and thus much smaller 

offset voltages are obtainable at the expense of more chip area. 

Fig. 4.3 shows an offset adjustable two-stage CMOS op-amp with a programmable current 

mirror as the load of the input stage. The op-amp has been designed for high-speed and high-

precision applications in a 1.0-/im CMOS technology. Since the first stage has the dominant 
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Figure 4.3: Offset adjustable two-stage CMOS op-amp with a programmable current mir
ror 

effect on the offset, the input referred offset voltage of the op-amp can be expressed as 

Vos,in = Vosi + Vosi + VoSr + ̂ bs.âys (4.3) 

where Vosi, Vosh and Vosr are the input referred random offset voltages due to the mismatches 

of the pairs (Ml, M2), (M3, M4), and (MRl, MR2), respectively, and Vos,sys is the systematic 

offset voltage. If VC=VCB, the systematic offset is usually small and can be reduced to a very 

small value by careful design. Clearly, Vos^sys is a function of the bias voltage VC if VCB is 

fixed. For appropriate device sizes, there exists a certain value VC such that the total offset 

voltage Vos,in is zero. The random offset voltage can thus be compensated by intentionally 

introducing an offsetting systematic offset voltage that is dependent upon VC. 

Assuming VC=VCB, the random offset voltages Vosi, Vosh and Vosr can be obtained as 

in the previous chapter or in [5]. The standard deviation of the sum of Vosi, Vosh and Vbsr is 

given by 

(TV, I^GSt - VTi\ 
OS,in v/2 

1 1 1 

+ + + 
{Vcsi - VTiY {VGS I  - VTIY (VcSr -

(4.4) 
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where the subscript i denotes the input transistors Ml and M2, the subscript / denotes the 

load transistors M3 and M4, and the subscript r denotes the transistors MRl and MR2 used 

as resistors. The standard deviation of the input offset voltage of the op-amp in Fig. 4.3 can 

be calculated based on (4.4). In this calculation 

were used as in the previous chapter. The designed transistor sizes, Li = Li = = Ifim, 

Wi = 240/im, Wi = 86//m, and Wr = Wnm, and the simulated excess voltages, Vasi - Vri = 

-0.626y, Vast - VTI = 0.427V, and Vosr - VTT — S.TSSV were used for the calculation. 

The calculated o"Vos is 12.2mV. This is somewhat high due to the short channel lengths of the 

input-stage transistors. The minimum sizes of the channel lengths were selected to obtain the 

fast settling characteristics of the op-amp. 

To obtain a 99.7% offset yield, the sizes of MRl and MR2 will be determined such that 

the offset voltage of can be covered by adjusting VC. For the present design the ratio 

of (16/1) was selected to be more conservative for the achievable offset resolution. With this 

selection the offset adjustable range of the op-amp was simulated using a unity gain configura

tion. The results are shown in Fig. 4.4. An offset adjustable range from —16.2mV to -{-19.6mV 

can be obtained by changing the bias voltage VC from 1.5V to 2.5V with VCB fixed to 2V. 

This offset adjustable range which is equivalent to —1.33crvos to -H.ôlcrvos leads to a 85.5% 

offset yield, provided the mean of the offset voltages is zero. The lower and upper limits of the 

bias voltage are determined by the reference voltages of the D/A converter (DAC) which will 

be discussed later. A wider adjustable range can be obtained by changing the DAC reference 

voltages, but the linearity will be degraded due to the nonlinearity of the NMOS resistors. The 

resolution will also be degraded by increasing the range of the DAC reference voltages at a fixed 

number of bits. 

A simple way to find VC such that the total input offset voltage Vos,in becomes zero is as 

follows: 

1. The output voltage of the op-amp is compared to zero when both the input terminals are 

2. The bias voltage VC of the transistor MR2 is adjusted in the direction of reducing the 

output offset voltage. 

<^L = = 0.014^m 

0.0236 
(4.5) 

(4.6) 

grounded. 

3. The procedure is repeated until the op-amp output voltage crosses zero. 
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Figure 4.4: Simulated offset adjustable range of the op-amp in Fig. 4.3. VCB is fixed to 

2V 

This offset tuning strategy is depicted in Fig. 4.5. The up/down counter is initially set to 

half of full scale such that the DAC output VC is equal to the fixed bias voltage VCB. The 

performance of the offset reduction depends upon the resolution of the bias voltage VC and the 

offset of the comparator. 

Fig. 4.6 shows a simplified block diagram of the entire offset compensated op-amp. It 

consists of three blocks: an op-amp block, a timing signal generator, and an offset tuning block. 

The op-amp block consists of two identical op-amps and several analog switches for ping-pong 

operation. The timing signal generator produces signals, P1-P4, to control the ping-pong 

structure. The offset tuning block wiU reduce the oflfset voltages of the op-amps by adjusting 

the bias voltages VCl and VC2. Circuit details and functions of the blocks are presented in 

the following sections. 

4.3 Op-amp Block with a Ping-Pong Structure 

The op-amp block diagram is shown in Fig. 4.7. The block consists of two identically 

designed op-amps of Fig. 4.3 and several switches which are used for implementing a ping-pong 

structure. VCl and VC2 are the bias voltages of the transistor MR2 of OPAl and 0PA2, 

respectively. One of the op-amps will be in a normal mode at any one time while the other is 

in an offset tuning mode. A 100% duty cycle can be obtained by interchanging their roles. The 
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Figure 4.5: Concept of the offset tuning scheme 
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Figure 4.6: Block diagram of the digitally offset compensated op-amp 
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Figure 4.7: Op-amp block diagram (Ping-Pong structure) 

signal Vconf is used to configure the op-amps either in an open-loop or in a closed-loop with 

unity gain. The other switches are controlled by the timing signals, P1-P4, generated by the 

timing signal generator to achieve the ping-pong operation. A similar operation was introduced 

in [90],[91], where two identical resistors which are implemented with NMOS transistors biased 

in the ohmic region and capacitors are alternatively tuned to obtain accurate RC products for 

continuous-time filters. Simulated performance of the uncompensated op-amp block is shown 

in Table 4.1. The SPICE simulation was performed with the circuit extracted from its layout. 

Fig. 4.8(a) shows the timing diagrams of P1-P4. During the first phase, OPAI processes 

the input signal while 0PA2 is in the offset tuning mode. A phase is defined here as the time 

duration from the moment that two op-amps interchange their roles to the next interchanging 

moment. Each phase consists of (128 for n=8) clock (CP) periods. The offset tuning 

block uses Vot which is the output offset voltage of 0PA2 at this time to generate an offset 



www.manaraa.com

137 

Table 4.1: Simulated performance of the op-amp block of Fig. 4.7 

Specification Performance 

Settling Time (-1V to IV Step Input) 

0.2% Error Limit, Cf,=lPF 21.6 nsec 

Input Systematic Offset Voltage 160 nW 
Open Loop Voltage Gain 700 (56.9 dB) 

Unity Gain Frequency 113 MHz 

Phase Margin 61° 

Input Common Mode Range ±2.0 V 

Output Voltage Swing ±1.9 V 

Power Dissipation 45.9 mW 

CMRR 56 dB 

control signal VC2. When the op-amps interchange their roles, P3 first goes to high at the 

128th CP falling edge, such that the signal input is also connected to 0PA2. After that, other 

three timing signals, PI, P2, and P4 change their states after one CP period. At this time the 

transient in OPAl to be used for tuning does not affect the tuning process because updating 

the bias voltage VCl is made after one clock period, and the one clock period is made long 

enough for the op-amp to finish its transient. 

An expected offset voltage waveform is shown in Fig. 4.8(b). During the reset (when the 

signal 'IS' is '0') the states of the four timing signals are (PI,P2,P3,P4)=(1,0,1,1), and thus, 

the output of the op-amp block Vout will be the initial uncompensated output offset voltage of 

0PA2 if the inputs are grounded. Of course, the magnitude of the offset voltage depends on 

the configuration of the op-amp. During the first phase, i.e., (PI,P2,P3,P4)=(1,1,0,0), Vout will 

be the uncompensated output offset voltage of OPAl, and the offset of 0PA2 is compensated 

by the oflfset tuning circuit. Therefore, during the second phase (P1,P2,P3,P4)=(0,0,1,1), the 

compensated offset voltage of 0PA2 will appear at the output while the offset of OPAl is being 

adjusted. The compensated offset voltage of OPAl can be thus found during the third phase. 

In the following phases only the changes of the offset due to the temperature and time drift 

will be compensated. 

The compensated offset voltages of the two op-amps can be different from each other, so 

the equivalent offset voltage of the op-amp block after calibration can be defined by 

Vbseq = "îaa;{|Vbsi|, |Vbs2|} (4.7) 

The ping-pong operation makes it possible that the op-amp can operate in a continuous-time 

mode while the offset voltages are kept small after the calibration time that corresponds to 
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Figure 4.8: (a) Timing diagram of the ping-pong structure (b) An expected offset voltage 

waveform of the op-amp block 
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Figure 4.9: Output delay of the op-amp block with respect to VC change 

128 CP periods. The temperature drift of the offset voltages can be also compensated by the 

ping-pong operation. 

Fig. 4.9 shows the simulated output delay of the op-amp block when VC is changed. The 

initial output voltage of the open-loop op-amp block was assumed to be 0.114V which is due 

to the systematic input offset voltage. The random offset was not considered. To reduce the 

offset, VC was decreased from 2V to 1.996V at t=l/isec. The step, about 4mV, corresponds 

to the resolution of the DAC, i.e., ILSB of 8-bit. The VC change causes the reduction of the 

output voltage, and thus, the input offset voltage. The delay time of the op-amp block with 

respect to the VC change is about 5/isec. Thus, one CP period must be longer than the delay 

time to correctly update the bias voltage VC. 

4.4 Offset Tuning Block 

The block diagram of the offset tuning block is shown in Fig. 4.10. It consists of a com

parator, a zero crossing detector (ZCD), two 8-bit up/down counters (UDC block), and two 

small 8-bit D/A converters (DAC). This block detects the output voltage Vot of the op-amp 

to be tuned and then provides an updated bias voltage VCl for OPAl and VC2 for 0PA2 

such that the offset voltages are reduced. The timing signals, F1 and F3, generated from the 

timing signal generator determine which op-amp will be tuned, so only one of the two up/down 

counters is enabled to count. The counters are initially set through the signal IS to half of full 
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Figure 4.10: Block diagram of the offset tuning block 

scale. This is done to accommodate for the inherent bipolarity of the offset voltages. 

If the comparator output is high, indicating that the offset is greater than zero, then the 

down signal of the up/down counter is set to '1', so that the counter counts down to decrease 

the bias voltage VC. The current mirror gain of the programmable current mirror is then 

decreased, and the op-amp output voltage is also decreased, i.e., the offset voltage is reduced. 

As long as the comparator output does not change, this procedure is repeated until PI or P3 

is changed. If the comparator output goes to '0' before the phase is changed, then the zero 

crossing detector detects this change and sets the count enable signal CE to '0' to prevent the 

op-amp output from oscillating. A change of the comparator output means that the op-amp 

output crosses zero, and the minimum offset is achieved. Thus, no further update of the bias 

voltage is required. 

4.4.1 Digital-to-Analog Converter 

A simple R and 2R resistor ladder network shown in Fig. 4.11 is used for an 8-bit DAC. The 

resistor ladder is implemented by PMOS transistors with the W/L ratios of 2/5 for R and 2/10 

for 2R. The ratio of the PMOS transistors used for the decoding switches is 10/1. The binary 

signals D0-D7 are the outputs of the up/down counter. One advantage of this simple structure 

is that the area is very small compared to other structures and increases only linearly with 

the number of bits. For the proposed offset compensation scheme the DAC does not require 
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excellent linearity because some degree of nonlinearity can be tolerated unless the resolution 

is significantly degraded. Even nonmonotonicity in the DAC can be tolerated. Nonlinearity 

and nonmonotonicity result in minor degradation of the resolution without affecting the correct 

operation of the offset compensation. The simple structure has been chosen to keep the area 

small. 

The simulated output voltages of the designed DAC at different digital settings are shown 

in Fig. 4.12, where Vre/+ =2.5V and Ke/- =1.5V. The simulated result shows that the DAC 

has the expected nominal nonlinear characteristics. The DAC output voltage at digital setting 

128 is 2.04V instead of 2.0V due to the nonlinearity. Fig. 4.4 shows that the op-amp output 

also exhibits a modest nonlinear relationship between the bias voltage of the programmable 

current mirror and the offset voltage. Due to the nonlinearity of both the DAC and the 

programmable current mirror the simulated worst-case resolution is 0.22mV when the offset 

adjustable range is — 16.2mV to +19.6mV, which is degraded from the theoretical resolution of 

0.14mV(=35.8mV/256) but satisfies the targeted resolution of 500/iV. 

The resolution can be readily improved by increasing the number of bits of the DAC and 

the up/down counters at the cost of a small increase in die area. If a 10-bit DAC is used, 

then a theoretical resolution of 35//V(=35.8mV/1024) can be obtained at the cost of two more 

flip-flops for a counter and 8 more PMOS transistors for a DAC. Another way to improve the 

resolution is to reduce the range of the DAC reference voltages. This will, however, reduce the 

offset adjustable range. 

4.4.2 Comparator 

A simple two-stage comparator with the output buffered is employed to compare the op-

amp output offset voltage to zero. The designed device sizes are WijLi = 28/2 and WifLi = 9/4. 

The standard deviation of the random offset voltage of the designed comparator was calculated 

based on (4.4), resulting in CTvb5=6.5mV. This comparator offset voltage can be tolerated 

because the op-amp in an offset tuning phase is in an open-loop configuration (see Fig. 4.7), 

and thus, the output offset voltage preserved at the input of the comparator is 700 (the open-

loop gain) times greater than the input offset voltage of the op-amp. Since 8-bit DACs are used 

for the present design, and the simulated resolution of the offset adjustment is 0.22mV, the 

minimum output voltage of the op-amp which must be resolved by the comparator is 154mV 

(0.22mVx700) which is much greater than the comparator offset voltage. Thus, only a small 

fraction of the comparator input offset which is the comparator input offset voltage divided 

by the open-loop gain of the op-amp wiU contribute to degradation in the achievable offset 
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Figure 4.11: R and 2R resistor ladder 8-bit D/A converter 
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Figure 4.12: Simulated DAC output voltages at 256 digital settings (Ke/+ = 2.5V and 

Vr,f- = 1.5V) 

resolution. 

4.5 Experimental Results 

The test circuit was fabricated in a 1.0-/xm n-well CMOS process. The chip photomicro

graph is shown in Fig. 4.13. The total circuit area excluding pads is 0.99mm^. The op-amp 

block occupies 14.7% of the total area, and the comparator and the two DACs occupy 0.84% 

and 2.12%, respectively. The remaining 82.3% is for the digital control circuits and connec

tions. The extra large area of the digital section can be compensated somewhat by using it in 

common for several op-amps. One simple example is to use time sharing operation. For the 

case of using two op-amp blocks, only one up/down counter can be used along with 4 DACs 

by including latches before DACs, and other blocks can remain unchanged. With additional 

multiplexing circuits and connections for time sharing operation, one digital tuning circuit can 

serve for two op-amp blocks such that two among four op-amps are always available for signal 

processing while one of the remaining two op-amps is in an offset tuning mode. This scheme 

can be extendable for circuits including more op-amp blocks. 

The CP frequency is set to 46.9 kHz (Tcp = 21.3fis). The period of one phase is thus 
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Tp = 128Tcp = 2.73ms 
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Figure 4.13; Chip photomicrograph 



www.manaraa.com

145 

A closed-loop configuration with a gain of 100 is used to characterize the offset voltage waveform 

of the op-amp block. The closed loop configuration is obtained by connecting two resistors 

(A1 = lA'îî and R2 = lOO/ffl) around the inverting input terminal, when the signal 'Vcon/' in 

Fig. 4.7 is set to '0'. With the inputs grounded 100 times the input offset voltage will appear 

at the output terminal Vgut- In this case a periodic square waveform that is generated from a 

function generator is used for the reset ('IS') signal, and this serves as a triggering signal to 

help an oscilloscope catch the nonperiodic offset voltage waveforms more easily. 

4.5.1 Measured Offset Waveforms 

A typical output offset waveform measured from one of the test chips is shown in Fig. 4.14(a). 

The waveform was obtained from the closed-loop feedback amplifier in the gain of 100 config

uration. The reset signal is changed from '0' to '1' at < = 2.73ms when i = 0 is referenced to 

the left edge of the trace. The horizontal scale is 2.73 ms/div which is the period of one phase 

Tp. The vertical scale is 200 mV/div, and the vertical axis offset is 500 mV. It can be seen that 

the measured offset waveform is very similar to the expected waveform shown in Fig. 4.8(b). 

The first two high states are due to the uncompensated offset voltages of 0PA2 and OPAl, 

respectively. The following low states are the compensated offset voltages. The initially un

compensated input offset voltages and the compensated offset voltages can be obtained from 

the plots by dividing the output voltages by the closed-loop gain of 100. 

By connecting Vot (see Fig. 4.7) instead of Vout to the oscilloscope input, the offset com

pensation process can be observed more clearly because Vot is the output offset voltage of the 

open-loop op-amp being tuned, and this signal is compared with zero by the comparator and 

finally reduced by the offset tuning circuit. The measured Vot is shown in Fig. 4.14(b). From 

the plot it can be seen that the initial uncompensated large offset voltages of 0PA2 and OPAl 

are reduced significantly during the first and second phases, respectively. It can be also seen 

that because of the large uncompensated input offset voltages and the large open-loop gains of 

the op-amps, the outputs of the open-loop op-amps initially saturate. 

During the first phase the initial offset voltage of 0PA2 is continuously decreased, and the 

offset compensation is stopped when the offset crosses the zero line. Thus the offset sits at a 

small negative level. In the next 0PA2 tuning phase, i.e., the third phase, the tuning circuit 

detects the negative polarity of the offset and starts to adjust the offset toward the positive 

direction. After the initial tuning, a single one-step adjustment (ILSB change of the DAC) is 

usually enough to make the offset cross the zero line. The zero crossing detector then makes 

the adjustment stop. This process is repeated in the following tuning phases. Therefore, each 
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Figure 4.14: (a) Output offset waveform measured at Vout with the op-amp having a 

closed-loop gain of 100 (VS; 200mV/div, Offset; 500mV) (b) Output offset 

waveform measured at Vot which is the output offset voltage of the open-loop 

op-amp being adjusted (VS; IV/div, Offset; OV) 
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Table 4.2: Measured initial and compensated offset voltages 

# Initial Vos Final |Vbs| # Initial Vos Final |Vbs| 

1 OPAl 9.9 mV 157 nV 2 OPAl 15.0 mV 150/iV 

0PA2 8.9 mV 191 fiV 0PA2 11.2 mV 309 /iV 

3 OPAl -6.3 mV 219 fiV 4 OPAl 9.5 mV 395 /iV 

0PA2 2.4 mV 97 mV 0PA2 11.6 mV 318 nV 

5 OPAl 8.0 mV 72 /iV 6 OPAl 5.0 mV 245 //V 

0PA2 6.3 mV 158 fxY 0PA2 2.3 mV 57 /zV 

7 OPAl -370 fiW 172 //V 8 OPAl 8.4 mV 102 nV 
0PA2 8.5 mV 261 AiV 0PA2 7.4 mV 185 juV 

9 OPAl 13.8 mV 313/xV 10 OPAl 590 /xV 299 nV 
0PA2 12.6 mV 163/xV 0PA2 1.5 mV 269 /iV 

op-amp will have two compensated offset levels, i.e., one is positive and the other is negative 

as shown in Fig. 4.14(b). Thus, the compensated op-amp wiU have bipolar offset voltages. 

Unipolar offset compensation and correspondingly an overall decrease in offset voltages can be 

readily obtained by slightly modifying the control logic (the zero crossing detector block) such 

that compensated offset voltages approach the zero crossing from the same direction during 

each phase. Doing this, the compensated offset variation will be substantially reduced, and the 

corresponding offset voltages are reduced by a factor of 2. 

4.5.2 Offset Compensation Results 

The compensated offset voltages are measured from Vot by expanding the vertical scale and 

dividing the values by the measured open-loop gain. This will be more accurate for small offset 

voltages than measurements from a feedback amplifier at Vout because of the large open-loop 

gain. The measured open-loop gains are between 400 and 700. The initial large offset voltages 

were, however, measured from Vout using closed-loop configurations with proper closed-loop 

gains which were selected low enough to guarantee that the op-amp outputs do not saturate. 

Of 13 chips tested, three showed initial offset voltages outside the compensatable range. 

This can be expected because of the low designed offset yield as mentioned in Section 4.2. The 

measured initial offset voltages and the compensated final offset voltages are shown in Table 4.2. 

Since each op-amp has two compensated offset levels as mentioned above, the greater one in 

magnitude is reported in the table. The table shows that most op-amp initial offset voltages are 

biased in the positive direction. This suggests a small wafer-level and/or die-level systematic 

offset. 
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All compensated offset voltages are less than 400/iiV in magnitude which met our design 

specification of 500/iV. These offsets are, however, somewhat degraded from the simulated 

resolution of 220/xV. The degradation is attributable, in part, to the systematic offset which 

causes the final steps of the offset control voltage VC to be placed around the lower left corner of 

the curve in Fig. 4.4 where the resolution is degraded. The nonlinearity of the fabricated circuit 

may be more severe than the simulated one. The comparator offset also partially contributes 

to the degradation in offset voltages. 

Although the resolution can be improved by a more careful layout, the systematic offset 

can be reduced, and the variations of the random offset voltages can be reduced by using a 

more linear portion of the plot in Fig. 4.4, an easier way to improve the resolution without 

reducing the offset adjustable range is to increase the number of bits of the DAC. In this case 

the" comparator offset will ultimately become the dominant factor limiting resolution. Further 

improvement with higher-bit DACs can be achieved by compensating the comparator offset. 

4.5.3 Transient Characteristics 

In many applications there are brief periods of time where the amplifier need not be 

operational, and in such applications the transient responses associated with switching the 

op-amp from the compensation state into the application state are not of concern since this 

switching can occur during these brief periods. Furthermore, the re-compensation rate can be 

very small ranging from minutes to days on even weeks in many environments. The effects of 

this switching transient even in true continuous operation are, however, very small. 

The measured transient characteristics due to the ping-pong operation are shown in 

Fig. 4.15. The upper waveform of Fig. 4.15 (a) and (b) was used as the triggering signal 

which wiU be denoted as ST, where 

S t  =  P I - P i .  

Therefore, as can be seen in Fig. 4.8(a), the period of ST is 128Tcp, and the duration of 5'T='0' 

is Tcp. At time A the inputs of the op-amp which have been connected to ground for offset 

tuning are switched to the input signal. After one CP period the two op-amps interchange their 

roles completely at time B. 

The lower waveform of Fig. 4.15(a) is Vot which is the output of the op-amp in an offset 

tuning mode. The waveform Vot exhibits the compensated output offset voltage of one op-amp 

until time A and shows the output offset of the other op-amp after time B. It can be seen that 

since the compensation of the op-amp which is in a new tuning phase is started after one CP 
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Figure 4.15: Measured transient characteristics (a) Output offset voltage measured at Vot 

(Lower trace, VS: 500mV/div) (b) Output signal measured at Vout when the 

op-amp is in a closed-loop configuration with a gain of 33 (Lower trace, VS: 

500mV/div) 
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Figure 4.15: (continued) (c) Magnified plot of (b) (Upper trace, VS: 200mV/div, Offset: 

-1.24V). The triggering signal ST is the upper trace of (a) and (b) and the 

lower trace of (c) (VS: IV/div) 
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period as mentioned in Section 4.3, the offset adjustment can be observed at time C which is 

two CP periods after time B. It can be also seen that no further offset adjustment is observed 

at the following CP falling edges such as time D and E since the offset crossed the zero line at 

time C, and after calibration a single one-step adjustment is usually enough to make the offset 

cross the zero line. 

The lower waveform of Fig. 4.15(b) was measured at Vout when the op-amp block was in a 

closed-loop configuration with a gain of 33 and a sinusoidal input was applied. The high-gain 

configuration was used to examine the transient characteristics more clearly. With low-gain 

configurations the transients were hardly observed. The output transients can be observed 

inside the circle on Fig. 4.15(b). Fig. 4.15(c) is a magnified plot of the circle on Fig. 4.15(b). 

The displacement of the output signal is due to the difference between the offset voltages of two 

op-amps. This displacement can be greatly reduced by using the unipolar offset compensation 

scheme as mentioned before. 

From the experimental results it can be seen that the transient energy in the output due 

to the ping-pong operation is not significant. The transient energy can be further reduced if 

the following schemes are incorporated with the current structure: 

1. Modifying the switching process such that the output of the op-amp to be used for signal 

processing follows the output of the op-amp which is currently being used. This can 

be done by connecting the output Vout with the input of the op-amp in a unity-gain 

configuration as shown in Fig. 4.16. This tracking process can be done during 5't='0'. 

2. Reducing the CP frequency greatly after the first two tuning phases. This can be readily 

obtained by modifying the control logic. 

3. Disabling the ping-pong operation after the initial power-up calibration and enabling only 

on demand. This will also reduce the digital noise associated with the clock pulse CP. 

Using these schemes, the transients will be almost negligible, and continuous-time operation 

can be achieved without any significant dynamic range loss. 

4.6 Conclusion 

An automatic digital offset correction method for continuous operation CMOS op-amps 

has been presented. A programmable current mirror is used to adjust the offset voltage. A ping-

pong structure is employed to obtain a 100% duty cycle while the offset voltage is constantly 

kept small. The proposed offset compensation is not sensitive to time and temperature drift. 
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Figure 4.16: An example switching process to reduce the transient effects due to the 

ping-pong operation (a) OPAl: signal processing, 0PA2: offset tuning (b) 

0PA2 tracks the output signal of OPAl during 5r='0' (c) OPAl: offset 

tuning, 0PA2: signal processing 

Experimental results show that the designed op-amps can be digitally adjusted to have input 

offset voltages of less than 400/iV in magnitude. The resolution can be substantially improved 

by increasing the number of bits of the DAC, doing layout more carefully, using a unipolar 

offset compensation scheme, and employing an offset compensated comparator. Experimentally 

measured transients due to the ping-pong operation are not significant. Several schemes have 

been proposed to further reduce the transient effects. 
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CHAPTER 5. VERY LOW VOLTAGE OPERATIONAL AMPLIFIERS 

USING FLOATING GATE MOS TRANSISTORS^ 

5.1 Introduction 

With emergence of increasing number of battery-operated applications, great interest has 

been aroused in low voltage circuit techniques. The research efforts for low supply voltage 

based operation have been focused mainly on digital circuits [92], especially on the high density 

memory circuits such as DRAMs and SRAMs [93],[94]. 

The current technology trends for low voltage operation are paralleling the scaling of device 

feature sizes and threshold voltages. Very low voltage operation can be possible through device 

scaling if the threshold voltage can be scaled down in proportion to the supply voltage scaling 

[95]. A 0.1/xm CMOS device called a low-impurity-channel transistor has been reported in 

[96], where the threshold voltage can be scaled down below O.IV. The scaling of the threshold 

voltage, however, requires much more complicated technologies called "substrate engineering". 

One problem with the scaling is the increased threshold voltage variation. There also exists a 

lower limit in scaling down the threshold voltage because the scaled down devices experience 

problems such as increased leakage currents, short channel effects and parasitic effects which 

are much more severe than in large feature size devices. 

On the other hand, a floating gate MOS transistor is capable of having a very low thresh

old voltage without device scaling and without any substrate engineering. The floating gate 

transistor (FGT) has been used primarily as a data storage device in EPROM and EEPROM 

circuits [97],[98]. Recently, however, the device has started to attract considerable interests 

as a nonvolatile analog storage device and as a precision analog trim element because it has 

the threshold voltage programmability with nearly infinite resolution as well as the long term 

charge retention. Experimental results have demonstrated that the threshold voltage of a test 

^ ©1993 IEEE. Reprinted, with permission, from Proceedings of IEEE International Sym
posium on Circuits and Systems, Chicago, vol. 2, pp. 1152-1155, May 1993. 
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FGT can be adjusted in sub-milivolt range increments with a charge loss less than 2% in 10 

years at room temperature [99]. 

Motivated by the unique and promising characteristics of the floating gate MOS transistors, 

a threshold voltage tunable op-amp structure for very low voltage (e.g. 0.5V) operation is 

presented in this chapter. To utilize the FGTs as op-amp circuit elements, their threshold 

voltages must be programmed and tuned. A two-step tuning method is used. One is coarse 

tuning, and the other is fine tuning. Two fine tuning methods are presented. 

5.2 Threshold Voltage Tunable Op-amp Structure 

To obtain an op-amp which can operate with a very low power supply, the threshold 

voltages of the floating gate MOS transistors composing the circuit must be reduced. The 

FGTs should also have very similar characteristics with those of conventional MOS transistors. 

This has been validated in the literature [102]. 

The structure and the programming operation principles of a floating gate MOS transistor 

are well known and wiU not be described in detail here, except to note that when a large 

enough field is present across the gate oxide, in most existing FGTs Fowler-Nordheim electron 

tunneling allows charge to be transferred to or from the floating gate, depending on the polarity 

of the field. The charge amount to be transferred depends on the magnitude and duration of 

the programming pulse that is needed to produce a large enough electric field in the tunnel 

oxide. Since charge transfer to or from the floating gate affects the threshold voltage of the 

FGT, three variables, the magnitude, polarity, and duration of the programming pulse, can be 

used to control the threshold voltage. 

One method of tuning the threshold voltage entails placing the FGTs in an array as shown 

in Fig. 5.1. Each cell terminology is shown in Fig. 5.2. Each cell consists of 6 transistors: a 

FGT, three select transistors (SD, SG, and SS) and two switch transistors (SI and S2). The 

select MOS transistors are required to tune the threshold voltage of the selected FGT only, 

and thus, the other FGTs that are not selected will not be affected by the tuning process. 

The switch transistors are used to connect or disconnect the FGT with other FGTs. A switch 

transistor at the source terminal of the FGT is not required since high voltages are not applied 

at the source terminal during the threshold voltage tuning. Although each cell has two switch 

transistors as shown in Fig. 5.1, two switch transistors are not always required for all cells. The 

number of switch transistors can be reduced and depends upon the circuit topology. 

The threshold voltage (Vj/,) tunable op-amp circuit has two operating modes: a Vth tuning 
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Figure 5.1: Floating gate MOS transistor array 



www.manaraa.com

156 

D 

Row 
Select 

Floating 

SG -

Control 
Gate 

FGT S2 
^ To Circuit 

Connection 

SS 

G S 

Figure 5.2: Floating gate MOS transistor cell terminology 

mode and a normal mode. In a Vth tuning mode the cells are disconnected from the main circuit 

and sequentially selected through the row and column selection lines so that the threshold 

voltages of the FGTs can be tuned. In a normal mode the cells are connected to each other 

according to the circuit topology by turning on the switch transistors, Si, and S2 in Fig. 5.2. 

The signal CE is used to connect or disconnect the cells from the circuit. 

One Vtk tuning strategy is presented here. The simplified entire block diagram of the 

Vth tunable low voltage op-amp circuit is shown in Fig. 5.3. A counter, a row decoder, and a 

column decoder can be used to sequentially select the cells of the FGT array. The Vth tuning is 

performed in two steps: a coarse tuning and a fine tuning. The coarse tuning is a preliminary 

step to provide an environment where the on-chip charge pump and the main circuit are capable 

of operating with a low voltage. The fine tuning is for providing a good matching properties 

and a desired operating point. 

In the coarse tuning all the FGTs that are the elements of the FGT array are approximately 

programmed in a one-tuning cycle to have a very low threshold voltage (e.g. lOOmV) using an 

external high voltage (e.g. 20V). The coarse tuning can be performed using either a closed-

loop mode or an open-loop mode. This action is performed only once just after the circuit is 

fabricated. After the coarse tuning the entire circuit operates with a very small power supply 

5.3 Vth Tuning Strategy 



www.manaraa.com

157 

D(0) RO 

R(N-1). D(n-1) 

D(n) C(0) 

D(n+m+1) 

CCP 

VDD 
SMC 

ST 
Control 
Block 

Charge 
Pump 

Column 
Decoder 
(mxM) 

Row 
Decoder 

(nxN) 

Threshold Voltage 
Tuning Block 

(n+m) bit 
Counter 
Block 

FGT Array 

(NxM) 

Vpp Vs 

Figure 5.3: Simplified block diagram of the Vth tunable low voltage circuit 
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Figure 5.4: The charge pump circuit constituted of floating gate transistors 

(e.g. VDD=0.5V). The fine tuning is performed under the external control signal ST. Whenever 

the signal ST is detected, the fine tuning is performed, and the circuit automatically returns 

to a normal mode when the fine tuning is finished. The fine tuning need not be a frequent 

event because of the long-term charge retention characteristics of the FGTs. This can afford 

the possibility of near continuous-time operation. 

In a fine tuning mode a high voltage is also required to adjust the threshold voltages of the 

FGTs. The high voltage Vpp is developed from VDD with an on-chip charge pump, and thus, no 

external high voltages are required. The charge pump consists of an oscillator, diode-connected 

floating gate MOS transistors, capacitors, and a voltage regulator as shown in Fig. 5.4. The 

detailed operation principles of the charge pump can be seen in [100]. To make the charge 

pump operate with a low power supply, the oscillator and the voltage regulator circuits are also 

constituted of FGTs. The threshold voltages of the FGTs in the charge pump circuit are also 

adjusted to a very low value (e.g. lOOmV) during the coarse tuning step. After that the charge 

pump can generate a high voltage Vpp from VDD, and the internally generated Vpp is used for 

the fine tuning. 

When the tuning of all cells in the FGT array is completed, the circuit automatically 

returns to a normal mode, and the oscillator of the charge pump circuit is also disabled. Thus, 

the charge pump does not generate the high voltage Vpp any more in the normal mode and is left 

in a state where it awaits another ST signal. In the normal mode the switch transistors must 

be turned on for the circuit to function correctly. Since the switch transistors are conventional 

MOS transistors, they will not be turned on by the very low supply voltage. Hence, another 

charge pump circuit is required which can generate a voltage that is high enough to turn the 
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switch transistors on in the normal mode. The power dissipation by the generated voltage wiU 

be very small since it is applied at only gate terminals of the MOS transistors and possibly one 

or two small drain or source diffusions. The frequency of the charge pump oscillator for the 

switch transistors does not have to be high because the load resistance is very high. 

5.4 Fine Tuning Method 

There can be many fine tuning methods to obtain a good matching property and a desired 

operation of the coarsely tuned op-amp circuit. Two fine tuning methods are presented here. 

The first method is to adjust the threshold voltages of all FGTs to a predetermined value. 

The second method is to adjust the intermediate node voltages of the circuit to pre-assigned 

values by adjusting the threshold voltages. The first method will be simpler and more generally 

applicable to all kinds of circuit structures than the second method. However, the second 

method wiU give better matching results because it can provide the node voltage matching 

while the first method can provide only the threshold voltage matching of the presumably 

matched transistors. 

5.4.1 Threshold Voltage Fine Tuning Method 

The block diagram of the fine tuning block for threshold voltage tuning is shown in Fig. 5.5. 

During a Vth tuning mode this block alternately measures the threshold voltage of a selected 

FGT and adjusts it to a desired threshold voltage. It is controlled by the control signal SMC gen

erated from the control block. The VT control block shown in Fig. 5.6 compares the measured 

Vth with the desired Vth and then, determines the adjustment direction and also determines 

through a zero crossing detector whether to keep adjusting or to finish it. If further adjusting 

is required, the unit pulse generator generates a unit programming pulse for Vth adjustment. 

The resolution of the Vth tuning depends on the magnitude and width of the unit programming 

pulse. 

The accuracy of the tuning results also depends on the performance of the VT measurement 

block. A simple scheme can be used to measure the threshold voltage. For example, Vth ^ Vas 

may be assumed at low IDS [101]. This method is very simple, but the measurement error is 

somewhat large. Using this kind of simple method, good absolute accuracy can not be obtained, 

but a good threshold voltage matching can be obtained for equally sized devices. To obtain 

more accurate tuning, a more complicated measurement circuit is required at the expense of 

much larger area. 
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Figure 5.6: The VT control block 
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5.4.2 Node Voltage Fine Tuning Method 

To obtain a better transistor pair matching of the op-amp, the internal node voltages can 

be adjusted to pre-assigned values by adjusting the threshold voltages. For node voltage fine 

tuning, a sequential tuning method for a circuit structure is required because the adjustment 

of one node voltage may affect the other node voltages. The order of the FGTs to be tuned 

must be carefully determined, and the FGTs must be placed in the FGT array according to 

the order. To use the node voltage fine tuning method, the circuit should be changed a little. 

Switch transistors for the nodes to be tuned are additionally required in the FGT array for 

comparison with pre-assigned values. No measurement circuit is, however, required because 

the node voltages are directly compared with the pre-assigned values, as defined by a reference 

voltage generator which can generate the same number of reference voltages as the number of 

nodes to be tuned. The reference voltages can be selected by the same counter and decoding 

circuits that are used for the FGT array. 

To demonstrate the node voltage fine tuning method, an example circuit of a NMOS, 

instead of an n-type FGT, differential input stage which is shown in Fig. 5.7 was simulated 

because there does not exist a good simulator for FGTs. In this simulation it was assumed that 

an n-type floating gate transistor and the NMOS transistor have very similar characteristics 

except that the former can be adjusted to have various threshold voltages. This assumption has 

been validated in the literature [102]. The node voltage changes were simulated by changing the 

threshold voltages of the NMOS transistors. The simulation results have shown that the change 

of Vt5 changes all the node voltages, VI, V2, and V3, and the change of VTI also changes aU 

the node voltages significantly. The change of Vya, however, causes very small changes in V2 

and V3. A change of 10mV in VTZ results in changes of less than 0.3mV in V2 and V3. The 

node voltages can thus be approximately adjusted to pre-assigned values by selecting the order 

of transistors to be adjusted. A possible node voltage fine tuning scheme for the differential 

input stage is as foUows: 

Step 1 The threshold voltage of M5 is tuned to adjust the node voltage V3 to its desired value. 

Step 2 The transistor M3 is tuned to adjust VI to its desired value. This step little affects 

the node voltage V3. 

Step 3 The transistor M4 is tuned to adjust V2 to its desired value. V3 will also be little 

affected by this step, but VI wiU be a little bit changed. 

Step 4 The threshold voltage of Ml is adjusted to obtain V1«V2 by comparing VI with V2 
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Figure 5.7: NMOS differential input stage 

and adjusting Ml in the direction of reducing the difference between VI and V2. This 

step will provide a good matching although the exactly pre-assigned node voltages can 

not be achieved. However, their difference will be very small and the convergence speed 

will be very fast. 

The differential input stage has been tuned according to the above procedure. The tuning 

results are shown in Table 5.1. The unit step of the threshold voltage which can be adjusted was 

assumed to be 0.2mV. The pre-assigned node voltages were assumed to be 0.23V, 0.23V, and 

0.12V for VI, V2, and V3, respectively. The initial node voltages are shown in Table 5.1. Step 

1 took 44 unit steps to result in 0.11996V for V3. Step 2 took 14 unit steps to obtain 0.23001V 

for VI. This step changed the node voltage V3 by O.llmV. Step 3 took 13 unit steps to obtain 

0.23001V for V2. This step also changed V3 by O.llmV and VI by O.lSmV. After Step 3 all 

the node voltages are very close to the pre-assigned values. To obtain a good matching between 

VI and V2, Step 4 was performed. Step 4 took only 1 unit step, and the consequence is that 

VI differs from V2 by 0.13mV. 

Further reduction of the difference can be obtained by using a narrower unit step, but 

the improvement will be restricted by the performance of a comparator that will be used for 

comparing between the node voltages and the pre-assigned values. It should also be noted that 
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Table 5.1: Tuning results of the node voltages of a NMOS differential input stage 

V1(V) V2(V) V3(V) # of unit steps 

Pre-assigned 0.23 0.23 0.12 

Initial 0.24175 0.24175 0.12842 

Step 1 0.22748 0.22748 0.11996 44 

Step 2 0.23001 0.22766 0.12007 14 

Step 3 0.23019 0.23001 0.12018 13 

Step 4 0.23003 0.23016 0,12027 1 

adjusting the node voltages to pre-assigned values may push one of the transistors into a linear 

region, so careful design and selection of the desired node voltages are initially required. The 

node voltage fine tuning method can provide better matching property and does not require 

a measurement circuit. The tuning scheme should, however, be changed for other types of 

op-amp structures. 

5.5 Conclusions 

In this chapter a method to obtain very low voltage op-amps has been presented. The op-

amp are constituted of floating gate MOS transistors. Adjusting the threshold voltages of the 

FGTs makes the op-amp have a capability of operating with very low power supply voltages. 

In the simulation here, operation at a supply voltage of 0.5V was obtained. Operation at 

substantially lower supply voltage levels can also be readily achieved. 

A two-step tuning scheme has been presented. The coarse tuning is used to adjust the 

threshold voltages of all FGTs to a small value (e.g. lOOmV) in a one-shot cycle so that the 

charge pump can operate with the low voltage and thus, the FGTs of the op-amp can be 

tuned with an internally generated high voltage from the charge pump. The coarse tuning is 

performed only once. The fine tuning which is performed under an external control signal is 

used to provide a good matching property and a desired operation of the op-amp. Two fine 

tuning methods have been presented and compared, which are a threshold voltage fine tuning 

and a node voltage fine tuning. The basic low-voltage methodology can be extended to achieve 

low voltage operation in other analog as weU as digital applications. 



www.manaraa.com

164 

CHAPTER 6. AN ACCURATE AND MATCHING-FREE Vt 

EXTRACTOR USING A RATIO-INDEPENDENT SC SUBTRACTING 

AMPLIFIER AND A DYNAMIC CURRENT MIRROR 

6.1 Introduction 

Numerous numerical techniques exist for accurately extracting device model parameters 

from measured data [82],[11]. One example of such a technique is the MOS transistor threshold 

voltage {VT) extraction using a linear regression on measurements of IDS at many VQS values. 

Such techniques are not well suited for real-time on-chip threshold voltage extraction. 

Recently, several real-time Vj extraction methods based on circuit implementations have 

been proposed for overcoming the above disadvantages [101],[103]-[106]. These methods are 

very fast although the accuracy is degraded compared to that attainable by the numerical 

methods. Most methods [103]-[105] require matched devices to extract VT for one test device 

of a fixed geometry. The resultant accuracy thus depends on the matching between two or 

more devices. These methods are inefficient when extraction of VT is required for many tran

sistors with various geometries and particularly unsuitable for VT extraction of small devices 

since the matching of small-size transistors is poor. These methods also require other com

ponent matching in their extraction circuits such as current mirror transistors and resistors. 

Mismatches of these components further degrade the accuracy of the extracted VT values. More

over, the methods [103]-[105] are not applicable for transistors with different bias conditions, 

i.e., nonzero substrate-to-source voltages {VBS ^ 0) since they need a cascode configuration 

of matched test-transistors with the same Vss of all the test-transistors which is not possible 

due to their cascode configuration. In contrast to the methods discussed in [103]-[105], the 

method discussed in [101] uses only one test device and thus does not require device matching. 

Although the latter method is very simple, it produces relatively large errors (about lOOmV) 

due to the uncertainty of choosing the proper threshold current which is used to measure VT-

In this chapter a matching-free VT extraction scheme is presented which does not require 
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Table 6.1; Feature comparison of Vj extraction schemes 

Schemes 

Required number 
of matched 
test-tiansistxns 

Requited components 
that should be matched 

Applicability 
at different 
geometries 

Applicability at 
different substrate 
bias conditions 

Comments 

Numerical [1] None None Efficient Yes 
Accurate but Not 
suitable for real time 

Wang [4] & 
Johnson [3] 9 Current mirror tis Inefficient No 

Using a transistor 
array 

Tsividis [5] 3 Current mirror trs Inefficient No 
Using a transistor 
string 

A]im[6] 2 Resistor & 
Current mirror trs Inefficient Yes 

BICMOS 
implementation 

Lee [7] None None Efficient Yes 
Simple but 
Poor accuracy 

Proposed None None Efficient Yes 
Dynamic 
implementation 

any replica of the device under test and which is applicable to transistors with different geome

tries and different substrate bias conditions. The proposed extraction circuit is implemented 

in a matching-free way by using a ratio-independent switched-capacitor amplifier and a dy

namic current mirror. Thus, the accuracy of the proposed scheme does not depend on the 

test-transistor matching and other component matching in the extraction circuit. The features 

of the proposed scheme is comparatively summarized in Table 6.1 with other extraction schemes 

mentioned above. 

6.2 Principle of the Matching-Free Vx Extractor 

6.2.1 Basic Scheme 

A conceptual schematic of the proposed Vr extraction scheme is depicted in Fig. 6.1. 

Applying the outputs of a current mirror, Ipi (with SI closed and S2 open) and ID2 (with SI 

open and S2 closed), to a test transistor which operates in the saturation region and assuming 

that the transistor has square-law characteristics, we obtain respectively 

KiVasi - VT)^ = Idi 

K{Vgs2 - = Toz, 

(6.1) 

(6.2) 
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Figure 6.1: Conceptual schematic of the proposed Vr extraction scheme 

where 

/d2 = 

K = 

nloi 
fiCoxW 

(6.3) 

(6.4) 
2 L ' 

and where VGSI and Vgs2 are the corresponding gate-source voltages of the device under test 

(DUT). Equation (6.1) and (6.2) have the same K and Vr because only one test transistor is 

used as contrasted with other extraction schemes. Solving these equations, we readily obtain 

the threshold voltage Vr 

• (6.5) Vr = -7=—TiVnVasi - ̂ 052) 
y/n — 1 

Assume SI and S2 are driven by a complimentary nonoverlapping clock. When SI is closed, 

VGS\ is sampled and multiplied by p. When S2 is closed, VGS2 is sampled and subtracted from 

pVasi- The result is then multiplied by q. The output voltage Vout of Fig. 6.1 is then 

Vout = QipVosi - VgS2)- (6.6) 

If we select 

P = y/n, (6.7) 
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Figure 6.2: Two switching schemes to obtain currents ID and AID 

then it follows from (6.5) and (6.6) that 

Vout = rnVr, (6.8) 

where 

m = q{y/n -  1). (6.9) 

Thus, an integer multiple of VT can be readily obtained by choosing an integer m. 

The easiest way to obtain VT is to choose n = 4 and m = 1 resulting in p = 2 and 9=1 

and thus, 

Vout = 2Vgsi - Vgs2 = VTI (6.10) 

where VGSI and Vas2 are the gate-to-source voltages of the test-transistor when the drain 

currents are /jj and 4/D, respectively. Two variants of a switching schemes that can be used 

to obtain currents ID and AID are depicted in Fig. 6.2. 

The simple analog arithmetic operation, (2VGSI — Vasi), can be accurately implemented 

using a switched-capacitor subtracting amplifier. These kinds of switched-capacitor circuits for 

basic arithmetic operations are capable of providing high accuracy as indicated in [73]. Most 

common implementations of the current mirror and the switched-capacitor amplifier require 
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device and capacitor matching respectively although matching with the device under test is not 

required. Since both the current mirror gain and the amplifier gain have been chosen to be 

both small and integral, both blocks can be dynamically implemented without requiring any 

matching of devices or capacitors. The implementation of the blocks will be discussed in the 

following sections. 

6.2.2 Model Error Consideration 

As with most other extraction methods [103]-[106], the proposed Vr extraction scheme is 

also based on the assumption that MOS transistors operating in the saturation region obey 

the square-law. The characteristics of real MOS transistors, however, deviate from the square-

law due to the nonideal effects such as channel-length modulation and mobility degradation, 

resulting in a discrepancy between the extracted Vr and a real Vr-

Including these nonideal effects, the drain current can be more accurately modeled by 

llo IDS = 
.1 -f B{VGS - VT) 

^^{Vgs-VT)\ (6.11) 
L{1 - XVDS). 

where A is the channel-length modulation parameter, 6 is the mobility degradation parameter, 

and fio is the zero-field mobility of carriers. The parameter A is inversely proportional to the 

channel length and usually in the range of 0.0041/"^ (L>50/im) to 0.3V~^ (for very short 

channel) [73]. Mobility degradation is caused by the increase of carrier scattering from the 

S,-S,02 interface as the normal channel electric field increases. The parameter 0 is inversely 

proportional to the channel length and usually in the range of 0.001 to 0.25V~^ [73]. 

Since the emphasis is on extracting VT, the threshold voltage must also be discussed. It 

should be noted that there are three differently defined threshold voltages as follows [107]: 

Vfo Zero-bias threshold voltage of a large device 

VTH Including device size effects and terminal voltage effects 

VQN Including subthreshold current effects 

VTO is the threshold voltage of a zero-biased very large device which is usually used as an 

input model parameter for SPICE simulations. VTO can be extracted with high accuracy by 

the extraction schemes based on the square-law since large-size MOS transistors relatively well 

obey the law. 

VTH is the effective threshold voltage where device size effects (short channel and narrow 

width) and terminal voltage effects (VBS and Vbs) are taken into account. VTO is thus a special 
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Figure 6.3: Illustration of the transition voltage VON and its difference from VTH 

case of VTH- The effect of VBS on the threshold voltage is the well-known body effect, where 

VTH increases with |Vb5|- The threshold voltage VTH is reduced as the drain-to-source voltage 

VDS increases, which is known as the Drain-Induced Barrier Lowering (DIBL) effect [108]. The 

DIBL effect is not significant unless the channel length is too short. As the channel length is 

reduced, the discrepancy between the extracted VTH and a real VTH increases because the A 

and 6 effects become significant, thus increasing the deviation from the square-law. 

VON is defined as the transition voltage between the weak inversion region and the strong 

inversion region [107]. The weak inversion region of operation is characterized by the fast 

surface states, NFS ( SPICE model parameter). When the gate-to-source voltage Vos reaches 

the transition point VON> the characteristic of the drain current IDS changes from the square-

law to an exponential law as shown in Fig. 6.3. The figure also shows clearly the difference 

between VTH and VON- The threshold voltage VON can not be extracted using the extraction 

schemes based on the square-law. In SPICE VON is obtained by adding VTH to another term 

which can be calculated using the parameter NFS extracted from measurements. 

To investigate the influence of the model error due to the A and 0 effects on the performance 

of the proposed VT scheme, equation (6.11) instead of the square-law equations (6.1) and (6.2) 

is used to derive VT n = 4 and m = 1. Neglecting the second order terms of A and/or 0, the 
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resulting expression is 

2VGS1 — ^GS2 — VT + —(A — 0)VexlVex2 

(6.12) 

where Vexi is the excess voltage Vasi — VT when the drain current is ID and 1^6x2 is the excess 

voltage VGS2 - Vr when the drain current is 41 D. The model error voltage due to the A and 9 

effects is thus 

Small excess voltages will help reducing the error voltage, which is an expected result 

because the channel-length modulation and mobility degradation effects increase with Vjjs 

and Vos» respectively, and the test device in our extractor is diode-connected to guarantee its 

saturation-region operation, resulting in Vos = Vos- It is interesting to note that the two 

parameters in (6.13) are in a relation of canceling each other, and fortunately, both parameters 

are inversely proportional to the channel length. Therefore, the variance of A — 0 and thus the 

error voltage will not increase substantially with the channel length reduction. For example, if 

the maximum difference value of the two parameters is 0.1 , if Vr = 0.8F, and if Vex2 = 0.4F, 

then the model error voltage will be less than 0.5%. 

The model error in the proposed extraction scheme has been simulated for two test de

vices which have different geometries using SPICE Level 2 MOS models (VTO=0.924V). To 

determine model error effects alone, no error associated with the current mirror or the analog 

arithmetic block was assumed. The extracted VT„I which has been calculated from simulated 

VGSI (at ID) and VGS2 (at AID) is compared with the threshold voltage VJH (NFS=0) computed 

by SPICE and listed in the SPICE output file. With the assumption that the VTH computed 

by SPICE is the actual threshold voltage, the error voltage i^Tcxi ~ ^TH) is plotted in 

Fig. 6.4(a) as a function of bias current ID-

As expected, the error voltages for the long-channel device (W/L=200/im/40/im) are 

smaller at all ID values than those for the short-channel device (W/L=20//m/4yiim). It can 

be seen that the error increases with ID since large ID increases the excess voltage as shown 

in Fig. 6.4(b), where the error voltages are plotted as a function of the excess voltage 1^6x2 

{VGS2 — VTH)- The figure exhibits that the error variation of the proposed scheme due to the 

excess voltage 1^x2 is comparable with the variation due to the device size. It can be also seen 

Vrerr — ^(A — ^)V^xlT4x2 

= ^(A - 9)V^^2- (6.13) 
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that the slope of the curves in Fig. 6.4 changes substantially at a small ID or a small Vexi that 

corresponds to the transition point VON- Therefore, the bias current ID should be selected 

carefully such that the excess voltages Veil and Vex2 are greater than the transition point but 

not too big to maintain a small model error. It can be seen in Fig. 6.4(b) that if < 0.4V 

than the error voltage due to the model error will be less than 5mV even with the short-channel 

device (L=4/im). 

The proposed scheme has also been compared with the linear regression (LR) method [82] 

in Table 6.2. In the LR method, IDS values are collected at 20 VGS values using SPICE, so no 

measurement error is assumed. For consistency in excess voltages, the Vas values are selected 

such that the highest sample value Vosh is Vgs2) and the lowest sample value VGSI is VQSI 

as shown in Table 6.2. Since threshold voltages are functions of device terminal voltages, and 

their variation increases as the device size decreases, the actual threshold voltage VTH of the 

short-channel device (L=4/im) computed by SPICE varies with VQS that is equal to VDS as 

shown in the table. At Vas = 1.066V, VTH = 0.889V, while at.Vcs = 1.525V, VTH — 0.887V. 

Thus, the VTH variation is about 2mV when the VGS change is 0.46V. This variation will be 

significant for shorter-channel devices. The VTH variation of the long-channel device (L=40//m) 

is almost negligible. In the proposed scheme the variation in the threshold voltage is due to 

the two different VGS values, VGSI and VGS2) used to extract VTHI and in the LR method the 

variation is due to the different VQS values used to grab the ID data. The average values 

VtHOV = 

(VTi/(VGSi) + VTH{VGS2))I'^ for the proposed scheme 

{VTHiyosi) + VT//(VGS/I))/2 for the LR method 

were used to calculate the error of extracted threshold voltages. It can be seen from the table 

that the accuracy of the LR method is similar to that of the proposed scheme, and both methods 

give large error when the samples are taken from large VGS values. 

6.3 Ratio-Independent SC Subtracting Amplifier 

Because of their potential for high-precision monolithic fabrication, switched capacitor 

(SC) circuits have been widely used for many applications swch as filters, data converters, and 

basic building blocks for analog signal processing. SC summing and/or subtracting amplifiers 

are one of the most common high-precision analog arithmetic building blocks. However, SC 

circuits still have some error sources associated with the components composing SC circuits 

such as MOS switches, capacitors, and amplifiers. Nonideal factors limiting the performance of 

SC circuits are as follows: 
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VTH computed by SPICE (a) as a function of the bias current ID (b) as a 

function of the excess voltage ^6x2 

W/L=20/4 — 
W/L=200/40 



www.manaraa.com

173 

Table 6.2: Accuracy comparison between the proposed scheme and the linear regression 

method 

Test device 
size(W/L) 

Number of 
samples XsSl / ^TH Xssh/ ^TH 

Extracted 
Vlat 

Error 
^Tat-^THiv 

20um 
20 

1.066V/0.888V 1.241V/0.888V 0.8919V 3.43mV 

Linear 
4um 20 

1.211V/0.888V 1.525V/0.887V 0.8971V 9.58mV 
Regression 
Method [1] 200um 

20 
1.116V/0.921V 1.309V/0.921V 0.9230V 2.03mV 

40um 
20 

1.275V/0.921V 1.623V/0.921V 0.9281V 7.09mV 

Test device 
size (W/L) 

Bias Curr. 
ID Vosi / VoS2 / VTH 

Extracted 
^EXT 

Error 
Vroct-VrHâv 

20um 
3uA 

1.066V/0.888V 1.241V/0.888V 0.8921V 3.61mV 

Tlie 
Proposed 
Scheme 

4um 3uA 
1.211V/0.888V 1.525V/0.887V 0.8961V 8.58mV Tlie 

Proposed 
Scheme 

200um 
lOuA 

1.116V/0.921V 1.309V/0.921V 0.9233V 2.26mV 

40um lOuA 
1.275V/0.921V 1.623V/0.921V 0.9275V 6.47mV 
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1. Parasitic capacitances 

2. Nonzero offset voltage of op-amps 

3. Finite dc gain of op-amps 

4. Capacitor mismatches 

5. Charge injection of MOS switches 

Many circuit techniques and strategies have been proposed to overcome these nonideal 

effects [109]-[121]. Most modern SC circuits use parasitic-insensitive structures [72, 109, 110] 

with which the influence of parasitic capacitances can be significantly reduced. The error 

due to op-amp offset voltages can also be readily reduced using various switching procedures, 

which is an attractive feature inherent to SC circuits [82, 111, 112]. A commonly used offset 

compensation scheme is to store the op-amp offset voltage on capacitors in one clock phase 

and to subtract it in the subsequent signal processing clock phase. The technique is known as 

auto-zeroing or correlated double sampling [82],[73]. 

In aU SC circuits the performance depends on the accuracy of capacitor ratios not the 

individual capacitor accuracy. Although the ratios can be realized with high accuracy in modern 

technology, they still produce some error. The ratio error due to capacitor mismatches can, 

however, be eliminated using the ratio-independent concept introduced by Lee [113] where 

multiplication by integer N of the input voltage can be obtained independently of the capacitor 

ratios at the expense of more clock phases with the required number of clock phases increasing 

with N. Hence, the ratio-independent concept has been used primarily for high-accuracy but 

low to medium speed applications such as high-resolution and low-cost ADCs [113]-[116]. 

Recently, Nagaraj [117],[118], Lason [119] and Haug [120] have proposed techniques to 

reduce the error associated with the op-amp finite gain. In these techniques the finite gain 

error is compensated during a main-operation clock phase using the finite gain error information 

obtained from a preliminary operation during the previous clock phase. It has been shown that 

with this scheme the effective gain of the op-amp is squared, and the phase error is also reduced. 

The simple arithmetic (2VGSI - Vg52) needed in our VT extractor is realized using a SC cir

cuit. Interestingly, the arithmetic, multiplication by two and subtraction, is also a key operation 

in algorithmic or cyclic ADCs [113]-[116]. To implement the SC circuit in a matching-free way 

and to relax the op-amp gain requirement. Lee's ratio-independent concept and Nagaraj's gain-

insensitive technique are employed in our SC subtracting amplifier. Now, all the nonidealities 

except for the charge injection of MOS switches can be compensated. 
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With this approach the charge injection effect becomes the dominant factor limiting the 

performance of the SC circuit. The charge injection mechanisms are quite complicated. To date, 

the charge injection compensation schemes [131]-[136] can perform only partial compensation. 

The charge injection problem deserves a more detailed discussion and will be addressed in a 

separate section. In this section the operation principle of the proposed SC subtracting amplifier 

is discussed, and the residual nonideal effects are studied through both theoretical analyses and 

SWITCAP [122] simulations. 

6.3.1 Principle of Operation 

The schematic of the proposed ratio-independent SC subtracting amplifier is shown in 

Fig. 6.5. The circuit performs the analog arithmetic {2VGSI — VGS2) and operates in six nonover-

lapping clock phases <j)i to (f>6. Since a single test device is used, Fosi and VgS2 can not be 

available at the same time. Thus, the input of the SC circuit, VQ is 

VG = 
VGSI for and <^4 

(6.14) 
Vgs2 for <^2 and <^3 

The current mirror in Fig. 6.2 is dynamically implemented such that it can supply the test 

device with Id during <^i and <f>4 and with 4Id during (f>2 and (/13. The capacitors CI and C2 

are used for main operations, and C3 and C4 are the corresponding auxiliary capacitors for 

the preliminary operations required for compensation of the finite op-amp gain. C3 and C4 are 

chosen such that C3/C4=C1/C2. Capacitor Cc is used to store the finite gain error voltage. 

The step-by-step operation of the circuit is described in Fig. 6.6 with ideal equations for the 

capacitor voltages. During phase (j)\ the input signal VGSI is sampled onto both the sampling 

capacitors CI and C3. During phase ^2 the charge corresponding to Vasi - VGS2 is transferred 

onto C4 from C3. At this time the error voltage (ideally zero) at the inverting input terminal 

of the op-amp which is caused by the finite gain and the offset voltage of the op-amp is stored 

in Cc. The error voltage is denoted as Vi(2) where the subscript denotes the node number and 

the number inside the parenthesis denotes the phase. The error voltage 1^(2) is subtracted 

from Vi(3) during <f>3 such that the virtual ground voltage level ^2(3) becomes as small as 

Vi(3) - Vi(2), while the main charge transfer is performed from CI onto C2. The difference 

voltage Vi(3) - Vi{2) will be very small. If the difference voltage is assumed zero, then the 

a m o u n t  o f  c h a r g e  s t o r e d  i n  C 2  w i U  b e  e x a c t l y  C 1 { VGS\  -  VGS2) -

During <1)4 the input signal VG5I is sampled again onto CI and C3. During (^5 the charge 

stored in C4 is transferred back onto C3. The error voltage associated with this operation is 
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Figure 6.5: Schematic of the proposed ratio-independent SC subtracting amplifier and 

clock sequence 
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also stored in Cc. During the last clock phase <j)Q, the charge stored in C2 is transferred back 

onto CI and added to the charge stored already during <^4. During this phase the virtual ground 

voltage >2(6) also becomes as small as Vi(6) - Vi(5). Assume again Vi(6) = Vi(5), then the 

amount of charge stored in CI is C1(2VGSI - VG52)) hence the output voltage is 2VGSI — Vas2 

independently of the capacitor ratios. In reality the difference voltages Vi(3) — VI(2) and 

Vi(6) - Vi(5), however, are not exactly zero because of the nonideal effects. In the following 

the effects of the nonidealities on the error voltage are investigated analytically. 

6.3.2 Sensitivity to Finite Op-amp Gain and Parasitic Capacitances 

The error voltage associated with the finite op-amp gain and the parasitic capacitances at 

internal nodes are analytically derived. To reduce complexity only two parasitic capacitances 

Cpi and Cp2 at node (1) and (2) which are critical nodes are considered. It is assumed in this 

analysis that the offset voltage of the op-amp is zero and 

There are two main charge transfer operations through the op-amp feedback loop during <^3 

and <j)Q. 

During phase ^3 the voltage across C2 is given by 

1-1-02 /CI ay C3\ az C3 
W3)-F2(3) = 

/CI ay C3\ 

l-\-ay\C2 l  + axCAJ 1-1-ax C4. 
(Ï^GSi - ̂ 052) (6.16) 

where 

and 

CI 1 
-^{Vgs\ - Vgs2)Y^P^ (6.17) 

fi ~ a^x(j/- 2) (6.18) 

a = l/A (A is the op-amp gain) (6.19) 

. = + + (6.20) 

z = 1 (6.22) 

It can be seen that the gain error €1 is inversely proportional to A^, and the effects of parasitic 

capacitances Cpi and Cp2 are also divided by A^. 
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During phase <p6 the output voltage is given by 

Vout(6) = (2VgS1 - VGS2) - Verr (6.23) 

where 

Verr — - 1)(VGSI " Vgs2) + x'y'C^Vasi - V^gg)] + CI(VGSI " Vos?) (6.24) 

and 

= l + Ei+ll+ai (6.25, 

^ + + (,,26) 

The final error voltage Verr is also inversely proportional to A"^ where it has been shown in 

(6.18) that €i cx l/A^. 

The derived equations were verified through SWITCAP simulations. One example that 

shows the errors in extracting VTH due to a limited finite gain and the presence of parasitic 

capacitances follows. With the following conditions: 

Vgsi = 12V Vgs2 = 1.4 V 

C1 = C2 = C3 = C4 = Cc 

= 0.1 (6.27) Cp\ _ Cj^ _ 
CI CI 
A = 100 (a = 0.01), 

the calculated output voltage is 0.99944V while the simulated one is 0.99946V. Since the ideal 

output voltage (Vqsi - Vgs2) is IV, it can be seen that with even a very small op-amp gain of 

100, the error voltage is as small as 0.05%. 

6.3.3 Sensitivity to Capacitor Ratio Mismatches 

In the previous analysis, capacitor matching as given in equation (6.15) is assumed. How

ever, there will exist a small mismatch component between the two capacitor ratios, i.e., C3/C4 

used at preliminary operation and C1/C2 used at main operation. This mismatch component 

is a side effect of the technique employed for compensation of the finite gain error and will 

slightly increase the error voltage. Effect of the capacitor ratio mismatch is now investigated. 

The capacitances Cl, C2, C3, and C4 can be defined as in [5] (see Chapter 3). 

Ck •= Cki\{ + CkfiiCkfi2 for fc= 1,2,3,4 (6.28) 
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where the N subscript denotes the nominal value, the R1 subscript denotes a random component 

that is process dependent but does not vary from capacitor to capacitor on a wafer, and the 

R2 subscript denotes a random component that varies randomly from capacitor to capacitor 

on a wafer. The nominal values are chosen such that Clw = C2jv = C3/v = C4jv. Since the 

random components including subscript R1 are all the same on a wafer, equation (6.28) can be 

rewritten by 

Ck = C + Ckri2 for & = 1,2,3,4 (6.29) 

where C  =  C IN +  C l m  =  C2jv +  C 2 f i i  =  C 3N + C3m = C4N + C4m-

The capacitor ratio C1/C2 is then 

CI C + C1R2 Cil + ClR2/C) 
C2 C + C2R2 Cil + C2R2/C) 

Correspondingly, 

. 1 + ̂ -5^ (6.30) 

+ (6.31, 

From (6.30) and (6.31), the ratio C3/C4 can be expressed as 

C3 CI C1r2 — C2R2 + C4R2 — C3R2 
(6.32) 

C4 C2 C 

where the second term denotes the random mismatch component between C1/C2 and C3/C4. 

By substituting (6.32) into (6.16), equation (6.17) should be modified as 

C\ 1 
^2(3) - VoutiS) ^(Vgsi - Vg52)——— (6.33) 

CZ 1 + 61 + 62 

where ei is given in (18) and 

~ c(z - ~ (6.34) 

The error €2 associated with the capacitor ratio mismatch is very small because the mismatch 

component is divided by the op-amp gain A as can be seen in (6.34). 

Assume C1R2, C2R2, C3R2, and C4R2 are independent random variables with the same 

standard deviation Cc, then the standard deviation of 62 becomes 

= (6.35) 
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If a 1% tracking error, i.e., crdC = 0.01, is assumed, then with the conditions in (6.27) the 

calculated is 0.26mV while the calculated deterministic gain error ci is 0.41mV. The error 

due to the capacitor ratio mismatch is small even with a small op-amp gain of 100. However, €2 

can be larger than ei when the op-amp gain is large because Eg (x l/vl while €1 « IjA?. During 

(j>Q the modified final error voltage is 

Verr = a\y'{x - 1)(Vg!S1 " VGS2) + x'y'{2VGSl - VgS2)] + (ci + e2)(VGSl - VGS2) (6.36) 

6.3.4 Sensitivity to the Op-amp Offset Voltage 

With the input Vq grounded the error voltages due to the op-amp offset during (^3 and <f>6 

are approximately given by 

Vout{S)-V2i3) = a(2/-^)(l + §^) Vos (6.37) 

W6) = °[2''(2 + §1)+(Î'-^)(i + §Î)§Î Vos (6.38) 

where Vos is the op-amp offset voltage. It can be seen that the circuit is also relatively 

insensitive to the op-amp offset voltage. With the conditions in (6.27), Vou<(6) = 0.0985VbS) 

where the op-amp gain is only 100. If i4 = 1000 and Vbs=10mV, then the error voltage due to 

Vos will be less than 0.1mV. 

6.3.5 Summary and SWITCAP Simulation Results 

Taking into account all the nonideal effects except that due to charge injection, the output 

voltage during (/>6 is given in (6.23), and the final error voltage Verr will be 

VeTT — (gain 4" 4" (oJJ (6.39) 

where 

(gain — 
1 

-

1 
A 

it 

- x'y'{2VGsi — Vgs2)] (6.40) 

(6.41) 

Vos (6.42) 

where x, y, and z are given in (6.20)-(6.22), and x' and y' in (6.25) and (6.26). 

To examine which error term is dominant, the three error terms have been calculated based 

on the conditions in (6.27) at various op-amp gains. In this calculation is used for €mia 
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Figure 6.7: Calculated error voltages (gain, ^mis, and €o// at various op-amp gains 

(^mis ~ — 0.05, and VQS — lOmV) 

with adC = 0.05, and Vos = lOmV. The calculated results are shown in Fig. 6.7 where it can 

be seen that the error due to the op-amp offset dominates the other error terms especially at 

large op-amp gains. 

The proposed SC subtracting amplifier has been simulated with SWITCAP. The simulated 

output error at different op-amp gains with Vos as a parameter is shown in Fig. 6.8. The 

conditions in (6.27) were used again except that in addition to the parasitic capacitances at 

nodes (1) and (2), parasitic capacitances (10% as before) associated with all other internal nodes 

are also considered. It is seen that with op-amp gains greater than 500, the error becomes less 

than 0.05% even with Vos = —20mV. In this simulation the capacitor ratio mismatch was not 

considered. Another simulation result is shown in Fig. 6.9 where A = 500 and Vos = —20mV 

are used. This simulation was done to determine an optimum size of the error storage capacitor 

Cc. It can be seen that the optimum value of Cc is around 2C (C=C1=C2=C3=C4). With 

Cc<C, the error is relatively big compared to that with Cc>C. 
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Figure 6.8: SWITCAP simulated output error voltage Verr at various op-amp gains with 
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Figure 6.9: SWITCAP simulated output error voltage Verr with different sizes of the error 
storage capacitor Cc (C=C1=C2=C3=C4, A = 500, and Vos = —20mV 
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6.4 Charge Injection Reduction Schemes 

In the previous section it has been demonstrated analytically and through simulations 

that the proposed SC subtracting amplifier is very accurate due to its insensitivity to the 

nonideal error sources such as parasitic capacitances, capacitor or capacitor ratio mismatches, 

finite op-amp gains, and op-amp oflfset voltages. Now, the remaining error source is the charge 

injection of the MOS switches. The SC amplifier has been simulated with SPICE using a charge 

controlled MOS model (XQC=0.5) [107],[137], where charge conservation is guaranteed by the 

method of computing terminal currents. The simulated error voltage due to charge injection 

effects is around lOmV. This is somewhat large and thus, should also be compensated to keep 

the accuracy high. 

The charge injection problem has received considerable attention [123]-[130] because it has 

become the most important factor limiting the accuracy of switched capacitor (SC) and switched 

current (SI) circuits. Several compensation schemes have been reported in the literature [131]-

[136]. In this section, the charge injection phenomenon and its effects are briefly reviewed, and 

then, a strategy to reduce the charge injection effects in the proposed SC amplifier is proposed. 

6.4.1 Charge Injection Phenomenon 

When a MOS transistor switch is turned off, the charge stored in its channel is injected into 

the surrounding nodes, i.e., the source, the drain , and the substrate nodes. This phenomenon is 

commonly known as the charge injection effect. The effect produced by the charge flowing into 

the substrate is called charge pumping [130]. The charge pumping effect becomes important 

when the gate voltage falls very quickly. No significant charge flow has been experimentally 

observed for switch-off fall times of greater than 5ns [123]. 

In addition to the channel charge, the charge associated with the feedthrough effect of the 

gate-to-diffusion overlap capacitance is also injected into the surrounding nodes. The turn-off 

of a MOS switch consists of two phases as shown in Fig. 6.10. During the first phase, the gate-

to-source voltage is higher than the threshold voltage, and thus, both the channel charge and 

the charge associated with the overlap capacitors are injected. When the gate voltage reaches 

the threshold voltage, i.e., Va = VS + VT, the conduction channel disappears, and the transistor 

enters the second phase of turnoff. During this phase only the charge of the overlap capacitors 

is injected until the gate voltage reaches VQL-

The total charge released during the switching off can be expressed as 

QT = CT{VGH -VS - VT) -{- (Covs + COVD){,VT + Vs - VOL) (6.43) 
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VGH 

VG=VS+VT 

SO OD VGL 

1st phase 2nd phase 

Figure 6.10: Two phases of the MOS switch turnoff 

where Cova and Covd are the overlap capacitances, VT is the threshold voltage, and CT is the 

total gate capacitance given by 

CT = C o x W e f f L e f f  +  Govs + Covd (6.44) 

The first term of (6.43) is the charge released during the first phase and the second term is the 

charge released during the second phase. 

The released charge consists of signal dependent terms and signal independent terms. 

Since the threshold voltage is a nonlinear function of the signal V5, the magnitude of the charge 

injected during switching off is also a nonlinear function of the signal. However, if the threshold 

voltage is assumed to depend linearly on the signal V5 as in [124], according to 

VJ" = VTO + NOVS (6.45) 

then equation (6.43) can be rewritten as 

QT = {(Cous + Covd - CT)(1 + no)}Vs + {CriVoH - Vro) + (Govs + Covd)iVTo - VOL)} 

— Qgain 4" QoJJaet (6.46) 

The first component Qgain causes a gain error since it linearly depends on the signal. The second 

term Qof jaet is independent of the signal and thus cause an offset error. If the assumption of 

(6.45) is not proper, than there will be nonlinear signal dependent terms which will be a source 

of distortion. 
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Figure 6.11: Simple sample-and-hold circuits used as test circuits for understanding the 

effects of charge injection 

6.4.2 Effects of Charge Injection 

To understand the effects of charge injection the simple sample-and-hold (S/H) circuits 

shown in Fig. 6.11 have been investigated analytically and experimentally by many researchers 

[123]-[129]. Their works indicate that the error voltages due to the charge injection are affected 

by the following factors: 

1. Switch turnoff speed 

2. Node impedances {Cs ,  CL,  and Rs)  

3. Signal voltage level {Vs) 

4. Switch transistor size (L and W) 

5. Substrate voltage ( V b )  

In the fast switching off conditions, the transistor conduction channel disappears very 

quickly, and almost equipartition of the channel charge is made independently of the node 

impedances. Thus, the percentage of charge injected into the data-holding node approaches to 

50%. In slow switching off conditions, there is enough time to make the final voltages at both 

sides equal. This allows the majority of channel charge to flow out through the low impedance 

node. Since source resistance Rs offers a leakage path for the channel charge during the switch 
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turn-off period, a small source resistance reduces the amount of charge injected into the data-

holding node. The above statements have been demonstrated experimentally and analytically 

in [123]-[126]. 

The gate dimension parameters L and W have an important effect on the amount of the 

injection charge. If the gate area is increased, the total amount of charge stored in the device 

is increased, as is the charge injection error voltage. It has been shown experimentally [127] 

and analytically [126] that the charge injection error voltage has a linear dependence on device 

dimensions. Theoretically, this can be attributed to the linear dependence of the inversion 

channel charge on the gate area. From this it can be recommended that a minimum-sized 

switch be used. 

The magnitude of the signal Vs affects the amount of charge stored on the gate through 

the gate-to-source voltage. It also affects the amount of charge stored in the bulk through the 

source-to-substrate voltage. Linear dependence of the charge injection error voltage on Vs has 

been observed experimentally in a wide range of Vs [127], where the nonlinear body effect is 

not significant. This can validate equation (6.45). The substrate voltage VB also has an effect 

on the amount of charge stored in the device. However, VB only contributes via the nonlinear 

body effect. Thus the change in the charge injection error voltage with VB is less significant 

than with Vs-

6.4.3 Charge Injection Compensation Schemes 

The following schemes have been used to compensate the error due to charge injection. 

1. Minimum-sized switches and/or large-sized storage capacitors 

2. Half-sized dummy switches or specially designed dummy switches 

3. Dummy capacitors 

4. CMOS switches 

5. Fully differential structure 

6. Scheduling of the timing control sequence 

The above techniques or their combination have been employed for many applications. The 

researchers, used technique numbers, and their applications are summarized in Table 6.3. 

A simple approach to reduction of the charge injection error is to use minimum-sized 

switches and/or large-sized capacitors. However, this approach leads to the decreased circuit 
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Table 6.3: Summary of commonly used charge injection compensation schemes and their 

application area 

Researchers Technique Numbers Applications 

Chin [115], Poujois [133], Coin [86] 1 A/D, Amplifiers 

Suarez, Gray, and Hodges [132] 2 Charge Redistribution A/D 

Li, Chin, Gray, and Castello [114] 5 & 6 Algorithmic A/D 

Bienstman and deMan [134] 2 & 3 D/A Converter 

Yen and Gray [131] 3 & 5 SC Amplifier 

Ogawa [135] and Watanabe [136] 6 SC Amplifier, S/H Circuit 

operating speed. The scheme using dummy capacitors along with dummy switches to assure 

by symmetry that exactly half the channel charge flow into the storage capacitor has limited 

performance due to the source impedance [134]. Fully differential structure can do a first-order 

cancellation of the charge injection offset. The gain error term of the charge injection, however, 

can not be compensated by this structure [114],[131]. The scheme scheduling the timing control 

signal can effectively compensate the offset error only [135] or the gain error only [114]. In 

CMOS switches controlled by complementary clock signals, the two types of charge released 

may partially compensate each other. This scheme is not efficient since it depends on the input 

signal and the timing skew of the two complementary clocks, and since no real matching exists 

between PMOS and NMOS [124]. 

The technique using half-sized dummy switches may provide perfect compensation if the 

impedances of both sizes of the switch are identical or if the switching off time is in the order 

of the intrinsic carrier transit time of the switch [123]. For the above two cases equipartition 

of the channel charge is possible, thus compensation by the dummy switches is guaranteed 

even for unsymmetrical source and drain impedances if perfect matching exists between the 

main switches and the dummy switches. For more practical switching off time, the switch will 

be temporarily conductive, and an equalization of the injected charges may occur. Therefore, 

no perfect equipartition of the channel charge occurs and half-sized dummy switches can not 

fully compensate for the charge injection error. More sophisticated rules can be used for the 

dummy switch design [123]. In any case the unavoidable mismatch and the uncertainty of other 

parameters limit the achievable compensation accuracy. 
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6.4.4 Charge Injection Reduction Strategy for the Proposed SC Amplifier 

As can be seen in the previous discussion, there does not exist any single scheme that can 

provide full compensation and can be applicable for all situations. Thus, it may be desirable 

to use a combination of several schemes. It is important to select the schemes that are most 

suitable for the circuit to be compensated and to apply them intelligently. For the proposed 

circuit, several schemes are incorporated to obtain a charge injection error voltage less than 

ImV. 

Since the operating speed is not critical in our circuit, small-sized switches (W/L=4/im/2^m) 

are used to reduce the amount of charge to be taken care of. The capacitor values have 

been selected such that Cl=C2=C3=C4=4pF and Cc=8pF. Very large-sized capacitors can 

be used to reduce the error voltages due to injected charge, but this will increase the required 

area significantly and also reduce the operating speed. If VG//=5V, VGL=OV, VS=1V, and 

W/L=4//m/2//m, then the total charge released during the switching off is about 26.7fC which 

was calculated from equation (6.43). Assuming half the total charge is injected into the capaci

tor (C=4pF), the error voltage will be 3.34mV. To obtain the overall circuit error voltage of less 

than ImV, other compensation schemes are required. A fully differential structure is excluded 

because it needs a much more complicated circuit and increaised area, and it can compensate 

the charge injection offset error only. 

The scheme using half-sized dummy switches can be generally applied for any types of 

SC circuits if equipartition of channel charge is possible. Thus, half-sized dummy switches are 

used in our circuit along with a fast falling gate clock which ensures almost equipartition of 

channel charge such that the dummy switches can compensate it. The gate voltage falling rate 

should be selected carefully. If the falling rate is too fast, the charge pumping effects [130] 

will be significant. If the falling rate is slow, then the deviation from the equipartition will 

increase. A gate clock falling rate of 5V/5nsec has been selected because no significant charge 

pumping effects was experimentally observed down to 5nsec in [123], and SPICE simulations 

showed that with the switch-off fall time of 5nsec the deviation from 1:1 partition is less than 

5% for most practical node impedance conditions. By using this the overall error voltage due 

to charge injection is expected to be greatly reduced although no perfect equipartition of the 

channel charge is possible, and the mismatches between the main and the dummy switches 

degrade the compensation accuracy. 

Without dummy switches the simulated charge injection error voltage was around 10mV 

as mentioned before where the designed op-amp has a dc gain of 800. Charge injection corrupts 

the signals sampled onto 01 and C3, or transferred onto C2 and C4. More seriously, due 
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to the charge injected into nodes (1) and (2) (see Fig. 6.5) the information stored in Cc is 

substantially corrupted when Cc is used for the main operations. Fig. 6.12 show the simulated 

voltage deference between node (2) and (1), i.e., Vcc (^2 - Vl), during <f)i to (pe, where the 

period of one clock phase is 5/xsec. The capacitor Cc stores the error voltages generated during 

the preliminary periods <j)2 and <j)4, and the information stored in Cc must be used without any 

change during the corresponding main periods (j)4 and <l>e, respectively. However, the simulated 

results indicate about 2mV change in Vcc shown in Fig. 6.12(a). The error voltage stored 

in Cc during 4>2 is —lAmV, but this is increased to O.lmV during ^3. Thus, the corrupted 

information is used for the main operations, resulting in a degraded accuracy. 

A very small change in Vcc of about O.lmV can be observed in Fig. 6.12(b) where half-sized 

dummy switch compensation was used. It can be seen that the dummy switches compensate 

the charge injected into node (1) and (2) and thus, greatly reduce the change of the information 

stored in Cc. When %/^gi=1.4V and VgS2=1-8V, the simulated overall output error voltage is 

0.6mV which is a greatly reduced value compared with lOmV obtained without compensation. 

This accuracy well satisfies our targeted accuracy of ImV. The simulated op-amp output voltage 

is shown in Fig. 6.13 where a 30mV offset voltage source is inserted at the noninverting input 

terminal of the op-amp. In the figure the preliminary operations which are erroneous due to the 

offset voltage and the finite op-amp gain, and the compensated main operations can be easily 

distinguished. The accuracy can be degraded by the nonideal factors associated the dummy 

switch compensation such as mismatches between the main and the dummy switches and clock 

skews. These effects are investigated next. 

6.4.5 Consideration of the Nonideal Effects Associated with Dummy-Switch 

Compensation 

Besides the simple S/H circuit in Fig. 6.11, another S/H structure which is widely used 

in SC circuits consists of a floating sampling capacitor between two MOS switches as shown in 

Fig. 6.14(a). This structure has been preferably used especially in stray-insensitive SC circuits 

such as SC filters and SC arithmetic building blocks. The structure is also a basic element in our 

SC subtracting amplifier as can be seen in Fig. 6.5. The dummy-switch compensated version 

is shown in Fig. 6.14(b). The charge injection effects of this circuit can also be investigated 

analytically. However its analysis will be much more complicated compared to the simple 

circuits in Fig. 6.11 which were analyzed theoretically in [123]-[126]. Even for the simple 

circuit, no closed-form solution exists for general cases. Thus, theoretical analysis of the circuit 
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Figure 6.12: SPICE simulated voltage across the error storage capacitor Cc, Vcc (a) With

out dummy-switch compensation (b) With dummy-switch compensation 
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Figure 6.13: Simulated op-amp output voltage of the SC subtracting amplifier in Fig. 6.5 
when VGSI=1>4V, VGS2=1-8V, Vbs=30mV, and .4=800 

in Fig. 6.14 is avoided. Instead, SPICE is used to investigate the nonideal effects associated 

with the dummy-switch compensation shown in Fig. 6.14(b). 

In this simulations the following parameters were used: analog ground 1{4G=2.5V, gate 

high voltage VGH=5V, gate low voltage VG£,=OV, gate voltage falling time TF=5nsec, ^5=10kfi, 

and Cs=lpF. Since the sampling capacitor is floating, the parasitic capacitors at both nodes 

and their mismatch will affect the charge injection process. Simulated charge injection error 

voltages Vcerri Vcerr = {ViN - VAG) " (V'l - V2), are depicted in Fig. 6.15(a) for the uncom

pensated circuit of Fig. 6.14(a) and in Fig. 6.15(b) for the compensated circuit of Fig. 6.14(b) 

as a function of Cpi - Cp2. From the simulated results it can be seen that the effect of the 

parasitic capacitance mismatch on the charge injection error voltage is much larger for the un

compensated circuit than for the compensated one. The half-sized dummy switch compensation 

is still sensitive to the input signal VIN as shown in Fig. 6.15(b) where simulations were done 

for four different input voltages from IV to 2.5V. The input voltage range of l.OV to 2.5V can 

cover most NMOS test transistors which have different geometries and different substrate bias 

conditions. 

It can be also seen that the sensitivity to input signals decreases as Cpi - Cp2 increases. 

Fortunately, this kind of parasitic capacitance mismatch is natural because an integrated ca-
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Figure 6.14: (a) A S/H structure consisting of a floating capacitor between two MOS 
switches (b) The half-sized dummy switch compensated version of (a) 
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Figure 6.15: Sensitivity of the charge injection error voltage Vcerr to the mismatch of par
asitic capacitances Cpi and Cp2 (a) for the uncompensated case of Fig. 6.14(a) 
(b) for the compensated case of Fig. 6.14(b) (Fcerr = (^W-%4G)-(^l-^2)) 
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pacitor (C) has a large parasitic capacitance (O.IC ~ 0.2C) associated with the bottom plate 

and a small parasitic capacitance (O.OIC ~ 0.05C) associated with the top plate. Thus, the 

bottom plate, which is denoted with a thicker line in the figure, should be connected to node 

(1), the input signal side. If the input signal is close to the analog ground, then the error volt

age variation is small regardless of the parasitic capacitance mismatch. In Fig. 6.5 the bottom 

plates are also denoted with thicker lines, and the signal levels associated with capacitors C2, 

C4, and Cc are the analog ground or the op-amp output. The op-amp output diifers from the 

analog ground by only Vast — VGS2 during (62 and ^3. The input resistance Rs has little effect 

on the results because a fast falling gate clock is used. The effect of the input capacitance Cs 

is also negligible unless it is too large. 

The effect of size mismatch between the main and the dummy switches on the compensation 

process has been simulated. The simulated results are shown in Fig. 6.16 where the parameter 

of the horizontal axis is {Am — 2Ad)l2Ad, and Am and Ad denote the area of main switches 

and the area of dummy switches, respectively. With 20% area mismatch, the variance is about 

100/ifV when VIN = 2.5V. Fig. 6.17 shows the effects of clock skews. The effects of delayed 

switching of the dummy switches is shown in Fig. 6.17(a) where the variance is less than 50)tiV 

for VIN = IV, and it becomes constant for long delay modes. Fig. 6.17(b) shows the effects 

of the clock skew between the two main switches. These simulation results indicate that the 

effects of the nonideal factors on the dummy-switch compensation process are not significant. 

6.5 Dynamic Current Mirror 

The current mirror block shown in Fig. 6.2 is implemented dynamically to supply accurate 

currents ID and AID to test devices. The dynamic analog techniques utilize an inherently 

attractive property of MOS transistors that analog information can be stored on the gate 

capacitor since no gate current is required in MOS transistors. Recently, this dynamic concept 

has been widely used to accurately implement analog circuits such as current mirrors [138]-[140], 

data converters [141],[142], and switched current (SI) circuits and filters [144]-[147]. 

By applying the dynamic concept to current mirrors, accurate current mirroring is possible 

without depending on the transistor matching. However, some by-products associated with the 

dynamic technique newly occur such as charge injection effects of MOS switches, transient 

effects when switching, leakage current in the sampling switches. To reduce the finite output 

conductance effects of the current mirror, the self-biased stacked mirror concept proposed by 
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(AM -  2AD)/2AD (%) 

Figure 6.1,6: Sensitivity of the error voltage Vcerr to the mismatch between the main 
switch area of Am and the dummy switch area of Ad (Cpi = 0.6pF and 
Cp2 = 0.2pF) 
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Wegmann and Vittoz [138]-[140] is used in our circuit. 

6.5.1 Principle of Operation 

The schematic of the dynamic current mirror and the required clock phases are shown in 

Fig. 6.18. To correlate the clock phases with those used for the SC subtracting amplifier, the 

first switching scheme shown in Fig. 6.2(a) waa selected for implementing the current mirror. 

The dynamic current mirror is composed of six current copier cells proposed in [143]. Each 

cell consists of a sampling switch 5,a, (t = 1,2,... or 6), a storage capacitor C,-, and a PMOS 

transistor. Switches Sib and Sic for i = 1,2,...,6, are used to periodically connect the cells 

with the input Id for refreshing the stored information and with the output for supplying the 

mirrored currents. The stacked common-gate transistors which are employed to increase the 

output impedance are connected such that one cell is always connected with node (1) to deliver 

current  I I  ( ideal ly  ID),  four  cel ls  are  always connected with node (2)  to  del iver  current  I2 

(ideally 4ID), and remaining one cell is connected to the input bias current ID for refreshing. 

When switches Sia and Sit are closed to memorize the input current Id, the sampling 

switch Sia must be opened first as shown in the clock phase diagram in Fig. 6.18 in order not 

to contaminate the stored information. Once Sia is open, the gate voltage is kept constant if 

leakage current in the sampling switch is ignored such that the drain current remains equal 

to Id' When Sit is opened, and Sic or Su is closed, the memorized current is available at 

the output. The transients occurred when Sib and Sic are switched can be a significant error 

source for continuous-time applications as investigated in [138],[139]. In our circuit the transient 

effects is not important because the currents are required for only specific time intervals, which 

indicates that the dynamic current mirror is suitable for our VT extractor. 

Clock phases of the current mirror, Sia, are correlated with clock phases of the SC sub

tracting amplifier, as mentioned before such that the current mirror can supply Id during 

^1 and <1)4 and AId during <f)2 and (^3 to the test device (see two switches connected to node 

(1) and (2) in Fig. 6.18). In fact, the switches in the current mirror are PMOS transistors, and 

thus the polarity should be inverted as follows: 

<j)i — Sia for 2 — 1, 2,. .., 6 

The output VG is directly connected to the input of the SC subtracting amplifier and to a 

diode-connected test device. 
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6.5.2 Accuracy Simulations 

The charge injection problem from the sampling switches is also compensated by the 

same strategy as used in the SC subtracting amplifier. Half-sized PMOS switches are inserted 

between the sampling switches and the storage capacitors. The switch gates are driven by fast 

rising clocks. Since the leakage current problem is not important if a proper clock frequency 

is used, the noiddeal effects limiting performance of the current mirror have been taken care 

of. The finite output conductance effects are reduced by using the stacked transistors, and the 

transients effect is not a problem in our circuit as mentioned before. 

The dynamic current mirror in Fig. 6.18 was simulated when node (1) and (2) were con

nected with a NMOS transistor (W/L=20/im/4/im). The simulated output currents Ii and I2 

are depicted in Fig. 6.19. The initial behaviors of the current copier cells to produce output 

currents of ratio 1:4 can be observed until t = 30//sec. After the initial cycle, the current mirror 

can supply the currents Ii and I2 of which the ratio is ideally 1:4 to the test device. The 

output  current  ra t io  accuracy is  shown in  Fig.  6 .20 as  a  funct ion of  the input  bias  current  ID-

Since the ratio error for one ID value varies slightly at different clock phases, the maximum 

values are selected and shown on the figure. The ratio errors in the ID range in interest are 

less than 700 ppm which produces approximately 0.5mV error in the arithmetic operation of 

2VGSI — VGS2- Therefore, along with the SC subtracting amplifier discussed in the previous 

sections the dynamic current mirror can perform the proposed VT extraction scheme accurately. 

6.6 Conclusions 

An accurate real-time Vj extraction scheme which does not need matched replica of the 

device under test has been proposed. A ratio-independent and finite gain insensitive switched-

capacitor subtracting amplifier and a dynamic current mirror have been designed to perform the 

proposed scheme accurately in a matching-free way. Model error associated with the proposed 

scheme has been investigated and compared with the linear regression method. The nonideal 

factors limiting the performance of the SC amplifier and the dynamic current mirror have been 

thoroughly investigated and their effects have been compensated in design. 

Extensive simulation results show the potential of the proposed VT extractor in accuracy. 

Taking into account unexpected process variations, the total error voltages associated with the 

designed circuit are in a few millivolt range. This error is smaller compared with the model 

error. To make the VT extractor applicable to various transistors which has different geometries 
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Figure 6.19: Output currents Ii and h of the dynamic current mirror of ratio 1:4 
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and different bias conditions and to achieve a high accuracy, the model error should be always 

kept small. The model error can be reduced by using an adaptive biasing scheme such that the 

excess voltage of test transistors are always kept small. 

The scheme is applicable to various applications where many Vj measurements are re

quired. For example, the scheme can be well applied for implementation of low-voltage floating-

gate MOSFET operational amplifiers presented in the previous chapter where VT measurement 

of many floating-gate MOSFETs with different geometries are essential for VT tuning [3]. 
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CHAPTER 7. CONCLUSIONS 

In this dissertation five topics are investigated which are concerned with theories and tech

niques for high-precision linear integrated circuit design and implementation. Since each topic 

has been already concluded, only brief summary are given in this chapter. 

In Chapter 2, a digital tuning scheme was presented for digitally programmable/tunable 

continuous-time filters. The tuning scheme consists of two steps, system identification (ID) 

and adjustment. Among various continuous-time system ID methods two indirect methods 

have been investigated. One is a time-domain approach where a discrete-time model is first 

estimated from input-output samples, and then it is transformed into an equivalent continuous-

time model. The other is a frequency-domain approach where frequency response of the filter 

are first measured by frequency response measurement algorithms from input-output samples, 

and a continuous-time model is then estimated by s-domain system ID algorithms based on 

the measured frequency response data. Very accurate domain transformation methods were 

presented. It has been shown that transformed results by the complex LS s-to-z and z-to-a 

methods are much more accurate than those by the well-known bilinear method. As a robust s-

domain system ID method, an iterative complex LS algorithm was presented. While it has been 

demonstrated from extensive simulations that both approaches can be fairly well applicable to 

the tuning scheme, the frequency-domain approach has been combined with an adjustment 

algorithm to serve as the digital tuning scheme because of its applicability to high-frequency 

applications with low-cost data acquisition circuits. Extensive simulations and experimental 

results have demonstrated that the digital tuning scheme can be applicable with fairly good 

accuracy to high-frequency and high-Q filters as well as to various filter functions. 

In Chapter 3, the common-mode rejection ratio and the offset of two-stage CMOS op-

amps have been investigated. Equations representing their statistical characteristics have been 

derived from which the distribution, mean, and variance of the CMRR and offset can be easily 

obtained if the process parameter variations are given. It has been shown that the random 
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common-mode gain as determined by the mismatch of paired devices is comparable to the de

terministic common-mode gain. It has also been shown that the probability density function of 

the CMRR is distributed similar to that of a Gaussian random variable, but the mean is finite 

and the symmetry is skewed somewhat, as contrasted to the probability density function of the 

offset voltage which has a Gaussian distribution with zero mean. The op-amp errors associated 

with finite open-loop gains, finite CMRRs, and nonzero offset voltages have been analyzed. It 

has been shown that a nonideal finite CMRR can actually reduce the op-amp errors caused by 

a finite open-loop gain. 

In Chapter 4 an automatic offiset compensation scheme for CMOS operational amplifiers 

was presented. The proposed offset reduction scheme is to use a programmable current mirror 

instead of a conventional one as a load of the op-amp differential input stage for control of 

the offset by adjusting the bias voltage of the programmable current mirror. By employing a 

ping-pong structure, continuous-time operation is obtained while the offset is constantly com

pensated which makes the scheme insensitive to time and temperature drift. The performance 

of the proposed scheme has been experimentally investigated. The proposed circuit has been 

fabricated using a 1.0-/xm n-well CMOS process. The measured offset voltages of the test cir

cuits are less than 400/xV in magnitude. The resolution can be improved by increasing the 

number of bits of the digital-to-analog converter and using a unipolar compensation scheme. 

It has been experimentally shown that the transient effects associated with the ping-pong op

eration are not problematic. Several methods have also been proposed to further reduce the 

transient effects. 

In Chapter 5, a threshold voltage tunable op-amp structure that can be operated with a 

very low power supply has been presented. Floating gate MOS transistors have been employed 

as the basic op-amp circuit elements. By reducing the threshold voltages of the floating gate 

MOS transistors, the op-amp circuit can operate with a very low power supply. Detailed circuit 

implementation methods have been discussed. Good matching can also be achieved by tuning 

the threshold voltages. A two-step threshold voltage tuning scheme has been presented. Its 

functionality has been demonstrated through simulations. The basic low-voltage methodology 

can be extended to other analog circuits as well as digital applications. Thus, implementation, 

characterization, and extension of the proposed low-voltage scheme can be a good future re

search topic. 
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An accurate threshold voltage extraction scheme for MOS transistors has been presented 

in Chapter 6. The proposed scheme differs from conventional methods in that it does not need 

matched replica of the transistor under test and thus, can be applied more easily and accu

rately than any others to real-time on-chip applications where threshold voltage measurement 

are required for many transistors with various geometries and bias conditions. The proposed 

circuit has been designed in a matching-free way using a ratio-independent switched-capacitor 

subtracting amplifier and a dynamic current mirror. Nonideal effects associated with these 

circuits have been thoroughly investigated. Simulation results have shown that the error asso

ciated with the designed Vr extraction circuit is in a few millivolt range. The scheme can also 

be well applied to the low-voltage circuits presented in Chapter 5 where VT measurement of 

many floating-gate MOS transistors with different geometries are essential for VT tuning. 
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